
Download free eBooks at bookboon.com

Introduction to Web Services with Java

57

A Sample Web Service Application

4 A Sample Web Service
Application

Objectives

Ater completing this chapter, you should be able to:

1. Write a Web Service that provides access to employee records stored in a relational database

2. Write a Web Service using JDK 6 or above

3. Publish a Web Service using basic Java Endpoint class

4. Test a Web Service with SOAPUI testing tool

5. Use wsimport to generate a Web Service stub for the client

6. Write a simple Web Service consumer to invoke a Web Service

4.1 A Sample application

Welcome to the world of Web Services! You may ind this chapter technically challenging at irst; however,

as you work your way through the examples, you will ind that the same patterns are used repeatedly

throughout. If you think of writing Web Services as similar to writing any other Java class, that may help

to ease any anxiety about the diiculty of this task.

In this application, we deploy a simple SOAP server using basic Java JDK delivery. In order to make

this application work, you will need the following sotware packages that can be downloaded from the

Internet (more instructions are included in Appendix A).

•	 Java JDK 6

•	 MySQL Community Server 5.6

•	 MySQL Employees sample database

•	 MySQL JDBC driver

Figure 4-1. A n-tier application

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

58

A Sample Web Service Application

A WS application is created using a Java framework to enable a WS consumer to manipulate employee

records stored in a relational database. Accessing the database from a Web server is accomplished using

JDBC technology. MySQL is the relational database used for this example. he transport protocol for

the WS is HTTP.

To avoid adding complexity to an already complicated concept, security concerns are not considered

in this example. Accessing the database from a remote machine (i.e., WS client) without proper

authentication is not a good practice; however, in this application, accessing the database with ixed

user ID and password is a matter of simplicity, not security. Furthermore, the use of the data source is

much more eicient using direct JDBC calls, however, the sample code does not follow that standard

convention.

he basic Java Endpoint class does not scale well in a business computing environment, but it is used

here to allow the simplest Java environment capable of supporting a simple WS application. In later

chapters, you can apply similar programming principles and techniques for WS programming to deploy

WS applications on an Apache Tomcat or an Oracle WebLogic server. hese two servers are covered in

Chapters 5 and 6, respectively.

Remember, the central idea of this chapter in terms of WS programming is how to get data from the

database through the use of WS technology, and SOAP in particular.

4.1.1 Use Case Diagram

Consider the following use case diagram for this sample application. From the perspectives of WS clients,

it invokes four operations of an employee data service. Basic data exchange includes two major data

types: employee number and employee record.

A resource can be created, read (or obtained), updated (or changed), and deleted. he concept of CRUD

has been fundamental to computer programming since the beginning of the ield computer science. We

have a set of employee records stored in a database, and we want to manipulate them from a remote

machine using SOAP via WS technology.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

59

A Sample Web Service Application

Service

Consumer

Create Employee

Update Employee

Get Employee

Delete Employee

Figure 4-2. Use Cases

Use Case 1: Create Employee

Primary Actor: Service Consumer

Main Success Scenario:

1. An end-user enters required employee information.

2. he service consumer then veriies the information.

3. he service consumer then calls the employees data service to create a new employee.

4. he service consumer presents a new employee number to the end-user.

Use Case 2: Update Employee

Primary Actor: Service Consumer

Main Success Scenario:

1. An end-user updates the required employee information.

2. he service consumer then veriies the information.

3. he service consumer then calls the employees data service for the update.

4. he service consumer informs the end-user about the status of the update.

Use Case 3: Get (Read) Employee

Primary Actor: Service Consumer

Main Success Scenario:

1. An end-user enters an employee number.

2. he service consumer then validates the number.

3. he service consumer then calls the employees data service to retrieve the employee record.

4. he service consumer presents the employee record to the end-user.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

60

A Sample Web Service Application

Use Case 4: Delete Employee

Primary Actor: Service Consumer

Main Success Scenario:

1. An end-user enters an employee number.

2. he service consumer then validates the number.

3. he service consumer then calls the employees data service to remove the employee record.

4. he service consumer informs the end-user about the status of the deletion.

A SOAP exception is thrown in when an error condition occurs.

4.1.2 Sequence Diagram

In a typical WS call, many layers of sotware are involved; however, at a high level, the sequence of actions

may be represented as in the following sequence diagram.

Service

Consumer

SOAP

Engine

(Client)

SOAP

Engine

(Server)

Employees

Service

Employee

DAO
Database

getEmployee()

sendMessage()

getEmployee()

getEmployee()

JDBC call

Figure 4-3. Sequence diagram of a getEmployee operation

Since all four operations are the basic request-response type of message exchange, a single sequence

diagram of getEmployee operation is shown.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

61

A Sample Web Service Application

A consumer, when ready, invokes a SOAP engine on the client side to begin a SOAP call across the

network. In this scenario, the consumer understands the SOAP message fully and constructs a SOAP

message using SOAP with Attachment API for Java (SAAJ). Once a SOAP message is formed, the SOAP

engine sends the message to the remote server via HTTP. Ater successfully receiving the message, the

server processes the request by invoking the appropriate business or data services in the backend. In this

case, the getEmployee method of the employees service is invoked. Before the data access layer is called,

additional business logic processing can be done in this class to manipulate the data. EmployeeDAO is

a component that interacts directly with the database using JDBC for data processing. he data source

may not always be a relational database.

Once the processing is completed, the employees service, with the help of the WS package, forms a SOAP

message and returns to the SOAP engine on the server side. As a part of the request-response message

exchange pattern, the response is then returned to the SOAP engine on the client side. Once the client

SOAP engine successfully receives the message, it returns to the Service Consumer for inal processing.

he process of forming a SOAP message is oten called ‘marshalling’. Conversely, the process of decoding

a SOAP message into a native form for further processing is called ‘unmarshalling’.

his sequence diagram shows an example of a synchronous message exchange. In other words, activities

in this diagram occur in sequence. In some cases, the processing may take a long time, and the server may

return immediately before the processing completes. his is a form of asynchronous message exchange.

When the server has completed processing the request, it may initiate a call to the client to return the

response with the actual data or simply a notiication. he client can also periodically poll the server for

data. he second option sufers two problems. If the timing window between two polls is too large, the

delay can be signiicant. If it is small, it wastes valuable processing power on both sides.

4.1.3 Deployment Diagram

he simple deployment of this WS application is depicted as follows:

EmployeesData

<<Server>>

data-svc.jar

<<Library>>

java-ws.jar

<<Library>>

MySQL

<<Database>>

JDBC

EmployessClient

<<Client>>

HTTP

java-ws-generated.jar

<<Library>>

java-ws-client.jar

<<Library>>

employees

<<schema>>
MySQL Driver

<<JDBC>>

JDBC URL WS Endpoint

Figure 4-4. A Simple Deployment Diagram

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

62

A Sample Web Service Application

In a real-world application, an IT organization may deploy a complex mesh of servers and databases to

manage their WS activities. here can be many client applications. In this sample WS application, we

create an environment that includes a client machine, a server machine, and a database machine. hese

machines can be virtual, which means that all three can be hosted by a single physical machine.

On the server side, we develop two sets of Java libraries – java-ws.jar and data-svc.jar. he irst contains

the WS code that interacts with the client over the network protocol HTTP. he second deals with the

database access via JDBC calls with the help of MySQL driver code written by MySQL database developers.

Together, they comprise a complete application.

On the client side, we develop a Java library that contains the WS client code, java-ws-client.jar. We use

wsimport to generate the second library, java-ws-generated.jar. his second library contains all of the

necessary code to interact with the server WS engine.

4.1.4 JDBC URL

To access a relational database from a Java application, a database connection must be established using

a JDBC URL with the following format:

jdbc:<subprotocol>:<subname>

where

•	 <subprotocol> is the name of the driver that was registered with Oracle. In this application,

‘mysql’ is used.

•	 <subname> is the identiication of the resource. It has the following format:

//host:port/subsubname

subsubname consists of the database schema name, user identiication and password.

In this example, a full JDBC URL can be written as:

jdbc:mysql://localhost:3306/employees?user=empl_1&password=password

In order to access the database via JDBC connection, a database account was created and assigned to

the employees database. It has all privileges to the employees database. he MySQL default access port

is 3306. Before you run the SOAP server program, make sure to download a JDBC driver and include

the driver in your Java’s classpath.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

63

A Sample Web Service Application

4.1.4.1 DbConig.java

In this sample code, the default values to connect to the MySQL database are (see DbConnection.java):

Hostname Saintmonica

Port number 3306

Account empl_1

Password Password

Database name Employees

JDBC driver name com.mysql.jdbc.Driver

Subprotocol Mysql

Table 1. Database Coniguration Parameters

www.sylvania.com

We do not reinvent

the wheel we reinvent

light.
Fascinating lighting offers an ininite spectrum of

possibilities: Innovative technologies and new

markets provide both opportunities and challenges.

An environment in which your expertise is in high

demand. Enjoy the supportive working atmosphere

within our global group and beneit from international

career paths. Implement sustainable ideas in close

cooperation with other specialists and contribute to

inluencing our future. Come and join us in reinventing

light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Introduction to Web Services with Java

64

A Sample Web Service Application

Listing 41. DbConig.java class

package com.bemach.data;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

/**

 * Make sure to download MySQL JDBC Driver from the website

 * Extract it, and include this ile (name may be changed between
 * release): mysql-connector-java-5.1.24-bin.jar into your classpath

 *

 */

public class DbConig {
 private String subprot = "mysql";

 private String host = "saintmonica";

 private String port = "3306";

 private String db = "employees";

 private String uid = "empl_1";

 private String psw = "password";

 private String driverName = "com.mysql.jdbc.Driver";

 public String getSubprot() {

 return subprot;

 }

 public void setSubprot(String subprot) {

 this.subprot = subprot;

 }

 public String getDriverName() {

 return driverName;

 }

 public void setDriverName(String driverName) {

 this.driverName = driverName;

 }

 public String getHost() {

 return host;

 }

 public void setHost(String host) {

 this.host = host;

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

65

A Sample Web Service Application

 public String getPort() {

 return port;

 }

 public void setPort(String port) {

 this.port = port;

 }

 public String getDb() {

 return db;

 }

 public void setDb(String db) {

 this.db = db;

 }

 public String getUid() {

 return uid;

 }

 public void setUid(String uid) {

 this.uid = uid;

 }

 public String getPsw() {

 return psw;

 }

 public void setPsw(String psw) {

 this.psw = psw;

 }

}

For the application, the DbConigure class is a placeholder for all necessary coniguration parameters

for connecting to to the MySQL database.

4.1.5 Web Service Endpoint

A WS must be published via a unique service endpoint in order to be accessed by a WS client. A URL

is a pointer to an available resource. his unique service endpoint can be stated using a URL with the

following format:

<scheme>:<hier-part>?query

where

•	 <scheme> is http protocol

•	 <hier-part> is //host:port/path

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

66

A Sample Web Service Application

In this example, the service endpoint is deined as:

http://localhost:9999/doc/employees

and

http://localhost:9999/rpc/employees

4.1.5.1 SvrConig.java

For HTTP connectivity to be used for SOAP, the sample code must use the following default values:

Hostname locahost

Port number 9999

Protocol http

Table 2. Server Coniguration Parameters

360°
thinking.

© Deloitte & Touche LLP and affiliated entities.Discover the truth at www.deloitte.ca/careers

http://localhost:9999/doc/employees
http://localhost:9999/rpc/employees
http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Introduction to Web Services with Java

67

A Sample Web Service Application

Listing 4-2. SvrConig.java class

package com.bemach.ws.server;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import com.bemach.data.DbConig;

/**

 * Make sure to download MySQL JDBC Driver from the website

 * Extract it, and include this ile (name may be changed between
 * release): mysql-connector-java-5.1.24-bin.jar into your classpath

 *

 */

public class SvrConig {
 private String listenHostname = "localhost";

 private String listenPort = "9999";

 private String listenInterface = "HelloWorld";

 private String listenProtocol = "http";

 private DbConig dbCfg = new DbConig();

 public DbConig getDbCfg() {
 return dbCfg;

 }

 public void setDbCfg(DbConig dbCfg) {
 this.dbCfg = dbCfg;

 }

 public String getListenHostname() {

 return listenHostname;

 }

 public void setListenHostname(String listenHostname) {

 this.listenHostname = listenHostname;

 }

 public String getListenPort() {

 return listenPort;

 }

 public void setListenPort(String listenPort) {

 this.listenPort = listenPort;

 }

 public String getListenInterface() {

 return listenInterface;

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

68

A Sample Web Service Application

 public void setListenInterface(String listenInterface) {

 this.listenInterface = listenInterface;

 }

 public String getListenProtocol() {

 return listenProtocol;

 }

 public void setListenProtocol(String listenProtocol) {

 this.listenProtocol = listenProtocol;

 }

}

he SvrConig class consists of information that is used to form a service endpoint for both styles –

document and RPC. Furthermore, the class contains the coniguration parameters that the data access

code uses in order to access the database.

4.1.6 About the employees1 sample database from MySQL

he employees database is a sample database from MySQL. he database schema was developed by

professor Chua Hock Chuan at Nanyan Technological University in Singapore. he site cat be visited at

http://www.ntu.edu.sg/home/ehchua/programming/sql/SampleDatabases.html.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.ntu.edu.sg/home/ehchua/programming/sql/SampleDatabases.html
http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Introduction to Web Services with Java

69

A Sample Web Service Application

Figure 4-5. Database Schema (Chua Hock Chuan)

In this sample application, we use only the employees table. his table can be created using the following

DDL:

Listing 4-3. Employees Table Deinition

CREATE TABLE employees (
 emp_no INT NOT NULL,
 birth_date DATE NOT NULL,
 first_name VARCHAR(14) NOT NULL,
 last_name VARCHAR(16) NOT NULL,
 gender ENUM ('M','F') NOT NULL,
 hire_date DATE NOT NULL,
 PRIMARY KEY (emp_no)
);

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

70

A Sample Web Service Application

All ields of the employees table are required with the primary key being the employee number. he

employees data record can be represented by Employee class in Java. his class is deined as follows:

4.1.6.1 Employee.java

We create an Employee data object that contains an employee record. Employee is a Java class that uses

Java Architecture for XML Binding (JAXB) annotations to assist the marshalling process. JAXB allows

Java developer to use Java API to read and write objects to and from an XML document. It eases the

process of reading and writing XML documents in Java. In particular, the annotation provides a simpler

mechanism for the SOAP engine to transform Java objects into XML and vice versa.

as a

e
s

alna

oro

eal responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

as a

e
s

alna

oro

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work

International opportunities

�ree work placements

al Internationa

or�ree wo

alna

oro

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Introduction to Web Services with Java

71

A Sample Web Service Application

Listing 4-4. Employee.java Class

package com.bemach.data;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.io.Serializable;

import java.util.Calendar;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlType;

@XmlRootElement(name="EmployeeService",namespace="http://bemach.com")

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name="employee")

public class Employee implements Serializable{

 private static inal long serialVersionUID = 1L;
 @XmlElement(required=true)

 private long emplNo;

 @XmlElement(required=true)

 private String irstName;
 @XmlElement(required=true)

 private String lastName;

 @XmlElement(required=true)

 private Calendar birthDate;

 @XmlElement(required=true)

 private String gender;

 @XmlElement(required=true)

 private Calendar hireDate;

 public long getEmplNo() {

 return emplNo;

 }

 public void setEmplNo(long emplNo) {

 this.emplNo = emplNo;

 }

 public String getFirstName() {

 return irstName;
 }

 public void setFirstName(String irstName) {
 this.irstName = irstName;
 }

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

72

A Sample Web Service Application

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public Calendar getBirthDate() {

 return birthDate;

 }

 public void setBirthDate(Calendar birthDate) {

 this.birthDate = birthDate;

 }

 public String getGender() {

 return gender;

 }

 public void setGender(String gender) {

 this.gender = gender;

 }

 public Calendar getHireDate() {

 return hireDate;

 }

 public void setHireDate(Calendar hireDate) {

 this.hireDate = hireDate;

 }

}

All required ields are relected in XML elements within the sequence. Optional elements oten include

numOccurs="0". he Java data types are mapped neatly into XML intrinsic data types, as shown in

the schema.

Listing 4-5. Data type of ‘employee’ within XSD

<xs:schema xmlns:tns="http://employees.rpc.ws.bemach.com/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0"

 targetNamespace="http://employees.rpc.ws.bemach.com/">

 <xs:element name="SOAPException" type="tns:SOAPException" />

 <xs:complexType name="employee">

 <xs:sequence>

 <xs:element name="emplNo" type="xs:long" />

 <xs:element name="irstName" type="xs:string" />
 <xs:element name="lastName" type="xs:string" />

 <xs:element name="birthDate" type="xs:dateTime" />

 <xs:element name="gender" type="xs:string" />

 <xs:element name="hireDate" type="xs:dateTime" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="SOAPException">

 <xs:sequence>

 <xs:element name="message" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

73

A Sample Web Service Application

4.2 Develop a Web Service

A bottom-up approach for developing a Web Service involves the following activities:

•	 Write a data access object.

•	 Write a business logic object.

•	 Write a service object.

•	 Deploy a service to a server.

•	 Publish the server for use.

In this application, no business services are included, thus the activities are simpliied as follows:

Start

Write Data

Access Class

Write Data

Service Class

Create a

Server

Run

Server

End

Listing 4-6. Activities for writing Web Services with Java

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Introduction to Web Services with Java

74

A Sample Web Service Application

We create two Java projects under Eclipse – data-svc and java-ws. he data-svc project holds Java code

that interacts with the database via JDBC. his project creates a library called ‘data-svc.jar’. his library

contains four Java classes:

•	 DbConig.java

•	 DbConnection.java

•	 Employee.java

•	 EmployeeDao.java

he java-ws project, which resulted in a java-ws.jar library, consists of the following Java classes:

•	 SvrConig.java

•	 Server.java

•	 EmployeeDocData.java

•	 EmployeeRpcData.java

4.2.1 Class Diagram

A static view of the server application is depicted in the following class diagram.

Listing 4-7. A class diagram

DbConfig

<<JavaBean>>

SvrConfig

<<JavaBean>>

Employee

<<JavaBean>>

EmployeeDao

<<utility>>

DbConnection

<<utility>>

EmployeeRpcData

<<Web Service>>

EmployeeDocData

<<Web Service>>

Server

<<worker>>

DbConfig

<<JavaBean>>
Employee

<<JavaBean>>

EmployeeDao

<<utility>>

DbConnection

<<utility>>

data-svc.jar

SvrConfig

<<JavaBean>>

EmployeeRpcData

<<Web Service>>

EmployeeDocData

<<Web Service>>

Server

<<worker>>java-ws.jar

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

75

A Sample Web Service Application

In a class diagram, the hollow-diamond adornment indicates a part-whole relationship between the

classes. his is called an ‘aggregation’. On the other hand, the solid-diamond adornment represents

a composite relationship between the classes. A composition is stronger than an aggregation in that

the former involves a complete management of the lifetime of the object. For example, at runtime,

an EmployeeDao object is responsible for allocation and deallocation of the DbConnection object.

he Employee object is allocated by the EmployeeDao but deallocated by the EmployeeDocData or

EmployeeRpcData object.

he dotted-line boxes indcate the boundaries of the two libraries to be created for this application.

4.2.2 Write Data Access Class

he Data Access Object (DAO) design pattern is used to provide abstract and encapsulated access of

data from the data sources. It manages the connection with the data source to store and retrieve data.

First, we create a Java project called ‘data-svc’ (see section 7.2.1). Ater we complete our coding of the

Java classes, this project should appear as follows:

Figure 4-6. Java Project: data-svc

4.2.2.1 Import JDBC driver to the project

Following the instructions in section 7.2 to install MySQL and download an appropriate JDBC driver for

MySQL database, the JDBC driver that is used for this application is mysql-connector-java-5.1.24-bin.jar.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

76

A Sample Web Service Application

Create a folder named ‘lib’ under the data-svc project by irst selecting the project. hen, choose File →

New → Folder. his folder will contain the JDBC driver library. Expand the project by clicking on the

triangle to the let of the project name.

Now, import the JDBC driver that you have downloaded by clicking on the lib folder. hen, choose

File → Import… he Select screen pops up as follows:

Figure 4-7. Select import type

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introduction to Web Services with Java

77

A Sample Web Service Application

Choose General → Archive File, and then click on the ‘Next’ button at the bottom of screen. An Archive

ile screen pops up as follows:

Figure 4-8. Import Archive ile screen

If you know the location of the JDBC driver for MySQL database, enter the ile name and location.

Otherwise, use the ‘Browse’ button on the right and choose the ile. hen, click the ‘Finish’ button on

the bottom of the screen.

4.2.2.2 Reference to the library

Next, make sure the project has a reference to the MySQL JDBC driver library. First, choose the data-

svc project. hen, select Project (menu) → Properties. he Properties for the data-svc screen will pop

up as follows:

Figure 4-9. Java Build Path

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

78

A Sample Web Service Application

On the let panel of the screen, choose Java Build Path. Select the Libraries tab from the top of the right

panel. Click on the Add JARs… button. A JAR Selection screen will pop up as follows:

Figure 4-10. JAR Selection screen

Expand data-svc/lib folder. Select the JDBC driver. hen, click OK. Your Java Build Path screen should

look like this:

Figure 4-11. Java Build Path

Now, the coding can begin. In the following section, we create two classes – DbConnection.java and

EmployeeDao.java.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

79

A Sample Web Service Application

4.2.2.3 DbConnection.java

In earlier sections, we created the DbConig.java class to hold the coniguration parameters for accessing

the database. he next logical step is to create a class to manage all the JDBC connections for this

application. Getting a database connection can also be accomplished using DataSource class; however,

in this book, we use a basic method for obtaining a JDBC database connection.

Listing 4-8. DbConnection.java class

package com.bemach.data;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.util.logging.Level;

import java.util.logging.Logger;

“The perfect start

of a successful,

international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be

www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Introduction to Web Services with Java

80

A Sample Web Service Application

public inal class DbConnection {
 private static inal Logger LOG = Logger.getLogger(DbConnection.class.getName());
 private static inal String ERROR_MSG = "ERROR: ";
 private Connection conn = null;

 public Connection getConn() {

 return conn;

 }

 private DbConnection(String driverName, String subprot, String host,

String port, String db, String uid, String psw) {

 LOG.info("Getting DB connection ...");

 try {

 Class.forName(driverName);

 String url = String.format("jdbc:%s://%s:%s/%s?user=%s&password=%s",

 subprot, host, port, db, uid, psw);

 conn = DriverManager.getConnection(url);

 } catch (SQLException e) {

 LOG.log(Level.SEVERE,ERROR_MSG+e);

 } catch (ClassNotFoundException e) {

 LOG.log(Level.SEVERE,ERROR_MSG+e);

 }

 }

 public static DbConnection getInstance(String driverName, String subprot,

String host,

 String port, String db, String uid, String psw) {

 return new DbConnection(driverName, subprot, host, port, db, uid, psw);

 }

 public void close() {

 try {

 if (conn != null) {

 conn.close();

 conn = null;

 }

 } catch (SQLException e) {

 LOG.log(Level.SEVERE,ERROR_MSG+e);

 }

 }

}

he DriverManager class helps create a JDBC connection in three ways.

getConnection(String url)

getConnection(String url, Properties info)

getConnection(String url, String user, String password)

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

81

A Sample Web Service Application

In this example, the irst method is used and the URL can be seen as follows:

jdbc:mysql://localhost:3306/employees?user=empl_1&password=pas

sword

he getConn() method requires all necessary database coniguration parameters to connect to the

database. When a JDBC connection is no longer needed, it must be explicitly closed by calling the

closeConn() method. Accumulated open connections will strain the resources. In most JDBC drivers,

closing a connection results in closing the Statement and Result sets that are associated with the

connection.

4.2.2.4 EmployeeDao.java

his class provides basic access to the employees2 table in the database. PreparedStatement is used to

avoid potential SQL injection attack.

Our task is to develop a WS called EmployeeDataService that allows a client to create, read, update and

delete a row from the employees table. For now, we are not concerned with security – we simply want

to show how this can be done thorugh a bottom-up approach to create a Web Service.

First, we create a class that allows access to this table. his class is called EmployeeDao and allows

four basic operations on a row of the employees table. An Employee class represents each employee

from the Java coding. EmployeeDao uses basic Java Database Connectivity (JDBC) to create a database

connection, issues an SQL statement, and processes the return. It is a basic JDBC application.

Listing 4-9. EmployeeDao.java class

package com.bemach.data;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Timestamp;

import java.util.Calendar;

import java.util.logging.Logger;

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

82

A Sample Web Service Application

/**

 * This class allows its application to perform the four (4) basic operations

 * of an Employee resource:

 * 1. Create

 * 2. Read

 * 3. Update

 * 4. Delete

 *

 * CRUD is classic in a sense that it is most like what an application does to

 * an authorized resource.

 *

 * Additional methods are:

 * getEmployeeByLastName

 * getEmplByFirstLastName

 *

 */

public class EmployeeDao {

 public static inal Logger LOG = Logger.getLogger(EmployeeDao.class.getName());
 private DbConig cfg = null;

 public EmployeeDao() {

 }

 /**

 * Constructor

 * @param cfg

 */

 public EmployeeDao (DbConig cfg) {
 this.cfg = cfg;

 LOG.info("Constructing EmployeeDao ...");

 }

 /**

 * From a ResultSet returns an Employee record.

 *

 * @param rs

 * @return

 */

 protected Employee getEmpl(ResultSet rs) throws SQLException {

 Employee empl = new Employee();

 Calendar cal = Calendar.getInstance();

 empl.setEmplNo(rs.getInt("emp_no"));

 cal.setTimeInMillis(rs.getTimestamp("birth_date").getTime());

 empl.setBirthDate(cal);

 empl.setFirstName(rs.getString("irst_name"));
 empl.setLastName(rs.getString("last_name"));

 empl.setGender(rs.getString("gender"));

 cal = Calendar.getInstance();

 cal.setTimeInMillis(rs.getTimestamp("hire_date").getTime());

 empl.setHireDate(cal);

 return empl;

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

83

A Sample Web Service Application

 /**

 * Create a new employee.

 *

 * @param empl

 * @return

 */

 public int createEmpl(Employee empl) throws SQLException {

 LOG.info("Create an employee");

 DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName(),

 cfg.getSubprot(), cfg.getHost(),

 cfg.getPort(), cfg.getDb(),

 cfg.getUid(), cfg.getPsw());

 String sql = "SELECT MAX(EMP_NO) FROM EMPLOYEES";

 PreparedStatement stmt = null;

 ResultSet rs = null;

 try {

 stmt = dbConn.getConn().prepareStatement(sql);

 stmt.execute();

 rs = stmt.getResultSet();

 rs.next();

 int nextEmplNo = rs.getInt(1);

 stmt.close();

 rs.close();

 sql = "INSERT INTO EMPLOYEES (EMP_NO, BIRTH_DATE, FIRST_NAME, LAST_

NAME, GENDER, HIRE_DATE) " +

 "VALUES (?,?,?,?,?,?)";

 stmt = dbConn.getConn().prepareStatement(sql);

 int idx = 1;

 stmt.setInt(idx++, ++nextEmplNo);

 Timestamp ts = new Timestamp(empl.getBirthDate().getTimeInMillis());

 stmt.setTimestamp(idx++, ts);

 stmt.setString(idx++, empl.getFirstName());

 stmt.setString(idx++, empl.getLastName());

 stmt.setString(idx++, empl.getGender());

 ts = new Timestamp(empl.getHireDate().getTimeInMillis());

 stmt.setTimestamp(idx++, ts);

 stmt.execute();

 return nextEmplNo;

 } inally {
 if (stmt != null) {

 stmt.close();

 }

 if (rs != null) {

 rs.close();

 }

 dbConn.close();

 }

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

84

A Sample Web Service Application

 /**

 * Update an employee record.

 *

 * @param empl

 * @return

 */

 public boolean updateEmpl(Employee empl) throws SQLException {

 LOG.info("Update an employee");

 DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName(),

 cfg.getSubprot(), cfg.getHost(),

 cfg.getPort(), cfg.getDb(),

 cfg.getUid(), cfg.getPsw());

 String sql = "UPDATE EMPLOYEES SET BIRTH_DATE=?, FIRST_NAME=?, LAST_NAME=?,

GENDER=?, HIRE_DATE=? " +

 "WHERE EMP_NO=?";

 PreparedStatement stmt = null;

 try {

 stmt = dbConn.getConn().prepareStatement(sql);

 int idx = 1;

 Timestamp ts = new Timestamp(empl.getBirthDate().getTimeInMillis());

 stmt.setTimestamp(idx++, ts);

 stmt.setString(idx++, empl.getFirstName());

 stmt.setString(idx++, empl.getLastName());

 stmt.setString(idx++, empl.getGender());

 ts = new Timestamp(empl.getHireDate().getTimeInMillis());

 stmt.setTimestamp(idx++, ts);

 stmt.setInt(idx++, (int)empl.getEmplNo());

 stmt.execute();

 return true;

 } inally {
 if (stmt != null) {

 stmt.close();

 }

 dbConn.close();

 }

 }

 /**

 * Delete an employee by Employee Number

 * @param emplNo

 * @return

 */

 public boolean deleteEmpl(int emplNo) throws SQLException {

 LOG.info("Delete an employee");

 DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName(),

 cfg.getSubprot(), cfg.getHost(),

 cfg.getPort(), cfg.getDb(),

 cfg.getUid(), cfg.getPsw());

 String sql = "DELETE FROM EMPLOYEES WHERE EMP_NO=?";

 PreparedStatement stmt = null;

 try {

 stmt = dbConn.getConn().prepareStatement(sql);

 stmt.setInt(1, emplNo);

 stmt.execute();

 return true;

 } inally {
 if (stmt != null) {

 stmt.close();

 }

 dbConn.close();

 }

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

85

A Sample Web Service Application

 /**

 * Get an employee of a given unique employee number ..

 *

 * @param emplNo

 * @return

 */

 public Employee getEmpl (int emplNo) throws SQLException {

 LOG.info("Getting employee by Employee number: "+emplNo);

 DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName(),

 cfg.getSubprot(), cfg.getHost(),

 cfg.getPort(), cfg.getDb(),

 cfg.getUid(), cfg.getPsw());

 String sql = "SELECT * FROM EMPLOYEES WHERE EMP_NO=?";

 PreparedStatement stmt = null;

 ResultSet rs = null;

 try {

 stmt = dbConn.getConn().prepareStatement(sql);

 stmt.setInt(1, emplNo);

 if (stmt.execute()) {

 rs = stmt.getResultSet();

 if (rs != null && rs.next()) {

 return getEmpl(rs);

 }

 }

 } inally {
 if (stmt != null) {

 stmt.close();

 }

 if (rs != null) {

 rs.close();

 }

 dbConn.close();

 }

 return null;

 }

}

his class has four important methods that can create, read, update and delete an employee record from

the employees table in the database. hese methods will be relected later through the four operations

of the two Web Services called ‘EmployeeDocData’ and ‘EmployeeRpcData’.

4.2.2.4.1 createEmpl(Employee empl)

his method receives a new employee record called ‘empl’ and inserts it into the employees table using

a JDBC PreparedStatement class. his method assumes that the callers of this method have already

validated the content of the employee record. Another approach is to include a validation method in

this class and call from each of the four operations. Notice that all operations dealing with the database

are done through a PreparedStatement in order to limit SQL inject attacks from the outside.

First, we get the largest employee number in order to create a new employee record with a unique primary

key. his way of getting an employee number may encounter a concurrency problem when another

application or process inserts another record at the same time; however, we ignore this condition here

for the sake of simplicity.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

86

A Sample Web Service Application

Once a new employee number has been received, the method inserts the record into the database and

a new employee number is returned to the caller; however, the inal clause will irst make sure that the

database connection has been closed. his is one of the many techniques to ensure that resources are

properly deallocated ater the method completes its task.

4.2.2.4.2 getEmpl(emplNo)

his method retrieves an employee record from the employees table of the database. A unique employee

number is a required input. If the record is found, it is returned to the caller. Otherwise, an exception

is thrown. Regardless, at this point, the database connection is closed.

4.2.2.4.3 updateEmpl(empl)

his method updates a record with all values from the input record except the employee number. A

Boolean value of true or false is returned ater the processing is completed. If the record exists and the

update completes successfully, a Boolean value of truth is returned. Otherwise, the method returns false.

4.2.2.4.4 deleteEmpl(emplNo)

Similarly to other methods of this class, this method opens a database connection then issues an SQL

statement to complete the task. Ater a successful completion, an employee record will be removed from

the table and a Boolean value of truth is returned. Otherwise, the method returns a value of false.

Overall, this class is relatively simple. It performs the most frequent operations on a resource stored in

the database. his class is kept simple because our focus is on the creation of Web Services not database

operations. When more complex business rules and multi-datasource data access activities are involved,

the fundamental concept of Web Services remains the same. he main focus of Web Service is the

interface – it must be robust and capable of evolving over time.

In the next section, we briely discuss how to test the data access object so that we can ensure some basic

quality assurance of the development team.

4.2.2.5 JUnit Test for Data Access Object

We provided a basic JUnit test for the EmployeeDao.java class. his class is called ‘EmployeeDataTest.java’.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

87

A Sample Web Service Application

Listing 4-10. EmployeeDaoTest.java Class

package com.bemach.data.junit;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import static org.junit.Assert.*;

import java.sql.SQLException;

import java.sql.Timestamp;

import java.util.Calendar;

import java.util.logging.Logger;

import org.junit.After;

import org.junit.AfterClass;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

import com.bemach.data.DbConig;
import com.bemach.data.Employee;

import com.bemach.data.EmployeeDao;

public class EmployeeDaoTest {

 public static inal Logger logger = Logger.getLogger(EmployeeDaoTest.class.
getName());

 /**

 * @throws java.lang.Exception

 */

 @BeforeClass

 public static void setUpBeforeClass() throws Exception {

 }

 /**

 * @throws java.lang.Exception

 */

 @AfterClass

 public static void tearDownAfterClass() throws Exception {

 }

 private EmployeeDao dao;

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

88

A Sample Web Service Application

 /**

 * @throws java.lang.Exception

 */

 @Before

 public void setUp() throws Exception {

 logger.info("Testing employee dao class ...");

 DbConig cfg = new DbConig();
 cfg.setDriverName("com.mysql.jdbc.Driver");

 cfg.setHost("saintmonica");

 cfg.setPort("3306");

 cfg.setDb("employees");

 cfg.setUid("empl_1");

 cfg.setPsw("password");

 dao = new EmployeeDao(cfg);

 }

 /**

 * @throws java.lang.Exception

 */

 @After

 public void tearDown() throws Exception {

 }

 /**

 * Test method for {@link com.bemach.data.EmployeeDao#getEmpl(int)}.

 * @throws SQLException

 */

 @Test

 public void testGetEmplByEmplNo() throws SQLException {

 Employee empl = dao.getEmpl(10327);

 assertTrue("*** ERROR NULL ***", empl != null);

 logger.info("found "+empl.getFirstName()+"/"+empl.getLastName());

 }

 @Test

 public void testCRUDEmpl() throws SQLException {

 logger.info(">>> get empl");

 Employee empl = dao.getEmpl(10001);

 empl.setFirstName("Test_First");

 empl.setLastName("Test_Last");

 Timestamp ts = Timestamp.valueOf("1970-01-01 0:0:0.0");

 Calendar cal = Calendar.getInstance();

 cal.setTimeInMillis(ts.getTime());

 empl.setBirthDate(cal);

 ts = Timestamp.valueOf("1970-01-01 0:0:0.0");

 cal.setTimeInMillis(ts.getTime());

 empl.setHireDate(cal);

 empl.setGender("F");

 logger.info(">>> create empl");

 int newEmplNo = dao.createEmpl(empl);

 logger.info(">>> get new empl");

 Employee newEmpl = dao.getEmpl(newEmplNo);

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

89

A Sample Web Service Application

 newEmpl.setGender("M");

 logger.info(">>> update new empl");

 dao.updateEmpl(newEmpl);

 logger.info(">>> get new empl again");

 newEmpl = dao.getEmpl(newEmplNo);

 printOutput(newEmpl);

 logger.info(">>> delete new empl");

 dao.deleteEmpl(newEmplNo);

 }

 private void printOutput(Employee empl) {

 StringBuffer sb = new StringBuffer();

 sb.append(", emplno=").append(empl.getEmplNo());

 sb.append(", fname=").append(empl.getFirstName());

 sb.append(", lname=").append(empl.getLastName());

 sb.append(", hire=").append(empl.getHireDate());

 sb.append(", birth=").append(empl.getBirthDate());

 sb.append(", gender=").append(empl.getGender());

 logger.info(sb.toString());

 }

}

Ater each operation, an employee record is formatted and displayed on the screen.

If all the tests are run successfully, the result should be displayed in green on the JUnit panel on the

let-hand side of the Eclipse IDE:

Listing 4-11. JUnit test result

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

90

A Sample Web Service Application

4.2.3 Package a Java Library

In order to run a build from a command line, JAVA_HOME and ANT_HOME variables need to

be deined. Make sure to include $JAVA_HOME/bin or %JAVA_HOME%\bin in the PATH variable.

JAVA_HOME should be pointed to the installed JDK. We’ve developed and tested with JDK 1.6. he

Ant build script was of version 1.7.1.

his build.xml build script by default runs from the root of the project data-svc directory. he classes

are stored in the bin directory, while the Java library data-svc.jar will be stored in the dist directory. A

clean build command will remove both directories. hus, two build commands should be used:

Ant dist (or simply ant)

Ant clean

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Introduction to Web Services with Java

91

A Sample Web Service Application

Listing 4-12. build.xml for data-svc Java Project

<project name="data-svc" default="dist" basedir=".">

 <description>

 Data Services

 </description>

 <!– set global properties for this build –>

 <property environment="env" />

 <path id="classpath.base">

 <ileset dir="./lib" includes="**/*.jar" />
 </path>

 <path id="classpath.compile">

 <path reid="classpath.base" />
 </path>

 <target name="init">

 <mkdir dir="./bin" />

 <mkdir dir="./dist" />

 </target>

 <target name="compile" depends="init" description="compile the source „>

 <javac srcdir="./src" destdir="./bin" debug="true">

 <classpath reid="classpath.compile" />
 </javac>

 </target>

 <target name="dist" depends="compile" description="generate the distribution">

 <!– Create the distribution directory –>

 <jar jarile="./dist/data-svc.jar" basedir="./bin" />

 </target>

 <target name="clean" description="clean up">

 <!– Delete the ${build} directory trees –>

 <delete dir="./dist" />

 <delete dir="./bin" />

 </target>

</project>

he output, a data-svc.jar ile, is stored in the dist directory. he content of this JAR ile should be as

follows:

META-INF/

META-INF/MANIFEST.MF

com/

com/bemach/

com/bemach/data/

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

92

A Sample Web Service Application

com/bemach/data/DbConig.class
com/bemach/data/DbConnection.class

com/bemach/data/Employee.class

com/bemach/data/EmployeeDao.class

From the standpoint of business, EmployeeDao should be tested to ensure that it works at the level of

the basic unit. All operations of the classes were thoroughly tested to ensure that the classes work.

4.2.4 Develop Java Classes for Web Services

To create a Java project under Eclipse IDE, please refer to Chapter 7. Import two libraries (i.e., data-svc.

jar and MySQL JDBC driver) into the lib folder under java-ws project. Also, make sure to have these

libraries in the Java Build Path. Refer to the previous section for instructions on how to make reference

to the libraries for a Java project in Eclipse.

We develop a Web Service for employee with two diferent styles: document and RPC. First, we create a

Java project called ‘java-ws’. Ater we inish coding the required Java classes, the java-ws project should

appear as follows:

Figure 4-12. java-ws Java Project

he following sections describe the steps required to create Web Services in two main Java classes –

EmployeeDocData.java and EmployeeRpcData.java

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

93

A Sample Web Service Application

4.2.4.1 EmployeeDocData.java

Writing Web Service in Java can be done by incorporating Java annotation into Java classes. hese classes

provide WS using SOAP. Java WS annotations that are used include the following:

• @WebService: indicates this class to implement a Web Service

• @SOAPBinding: speciies Web Service to bind to a SOAP protocol

• @WebMethod: exposes an operation as a Web method.

• @WebParam: mapps individual parameters to a WS message.

A document-style SOAP binding is used for this application.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Introduction to Web Services with Java

94

A Sample Web Service Application

Listing 4-13. EmployeeDocData.java Class

package com.bemach.ws.doc.employees;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.util.logging.Logger;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.xml.soap.SOAPException;

import com.bemach.data.DbConfig;
import com.bemach.data.Employee;
import com.bemach.data.EmployeeDao;

@WebService

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)

public class EmployeeDocData {
 private static final Logger LOG =
Logger.getLogger(EmployeeDocData.class.getName());
 private EmployeeDao dao = null;

 public EmployeeDocData (DbConfig cfg) {
 dao = new EmployeeDao(cfg);

 }

 @WebMethod

 public Employee getEmployee(@WebParam(name="emplNo")long emplNo) throws

SOAPException, Exception {

 LOG.info("Doc.readEmployee");

 Employee employee = dao.getEmpl((int)emplNo);
 if (employee == null) {
 throw new SOAPException ("No such employee!");

 }

 return employee;

 }

 @WebMethod

 public long createEmployee(@WebParam (name="employee")Employee employee) throws

Exception {

 LOG.info("Doc.createEmployee");

 return dao.createEmpl(employee);

 }

 @WebMethod

 public boolean updateEmployee(@WebParam (name="employee")Employee employee)
throws Exception {
 LOG.info("Doc.updateEmployee.");

 return dao.updateEmpl(employee);

 }

 @WebMethod

 public boolean deleteEmployee(@WebParam(name="emplNo")long emplNo) throws

Exception {

 LOG.info("Doc.deleteEmployee.");

 return dao.deleteEmpl((int)emplNo);

 }

}

SOAP Style

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

95

A Sample Web Service Application

his class has four major operations (i.e., CRUD) on an employee record. Note that for each operation,

the service creates an EmployeeDao object to call the matching operation. he call is then returned as

the return of the operation of the service. Note that the marshalling of the return object is accomplished

with the assistance of the JAXB component in Java.

hese four operations are simple. Each method calls the corresponding method provided by EmployeeDao

instance.

4.2.4.1.1 @WebService Annotation

@WebService annotation indicates that this class (or an interface) impelements a Web Service. his

annotation has six (6) optional elements that can be used for a more detailed deinition of a Web Service:

1. endpointInterface: the complete name of the service endpoint interface

2. name: the name of the <portType> element within the WSDL

3. portName: the name of the <port> element within the WSDL

4. serviceName: the name of the <service> element within the WSDL

5. targetNamespace: the targetNamespace attribute of the <deinition> element of

the WSDL

6. wsdlLocation: the content of the location attribute of the <soap:address> element

In this application, we did not include these optional elements. We will deine the location of the WSDL

when we create an Endpoint within the server code (Server.java).

4.2.4.1.2 @SOAPBinding Annotation

his annotation speciies how to map a Web Service onto the SOAP message protocol. hese involve

three optional elements:

1. parameterStyle: his can be either BARE or WRAPPED.

2. style: his can be either DOCUMENT or RPC

3. use: his can be either LITERAL or ENCODED.

In this sample application, we use DOCUMENT and RPC styles for two separate Web Services.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

96

A Sample Web Service Application

4.2.4.1.3 @WebMethod Annotation

his annotation customizes a method that is exposed as a WS operation. here are three (3) optional

elements that can be used with this annotation:

1. action: name of an operation deined within the WSDL

2. exclude: excludes the method from being exposed as an operation of a Web Service

3. operationName: name of the operation.

4.2.4.1.4 @WebParam Annotation

Individual parameters of an operation can be named in the same way as the method. Use this annotation

to change to diferent names within the WSDL. Optional parameters are:

1. header: if true, the parameter is extracted from the message header instead of from the

message body.

2. mode: there are three basic modes – IN, OUT, and INOUT.

3. name: the parameter is mapped to name in XML element that represents the parameter. If

DOCUMENT style is used, name is required.

4. partName: if RPC style is used, this is the name in the wsdl:part element.

5. targetNamespace: if DOCUMENT style is used, the parameter maps to a header.

4.2.4.2 EmployeeRpcData.java

his class implements the SOAP RPC style of Web Service. It is nearly identical to that of the document

style with the exception of SOAPBinding annotation. his class is used to show the diference between

the two styles in use today.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

97

A Sample Web Service Application

Listing 4-14. EmployeeRpcData.java Class

package com.bemach.ws.rpc.employees;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.util.logging.Logger;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import javax.xml.soap.SOAPException;

import com.bemach.data.DbConig;
import com.bemach.data.Employee;

import com.bemach.data.EmployeeDao;

@WebService

@SOAPBinding(style=SOAPBinding.Style.RPC)

public class EmployeeRpcData {

 private static inal Logger LOG = Logger.getLogger(EmployeeRpcData.class.
getName());

 private EmployeeDao dao = null;

 public EmployeeRpcData (DbConig cfg) {
 dao = new EmployeeDao(cfg);

 }

 @WebMethod

 public Employee getEmployee(@WebParam(name="emplNo")long emplNo) throws

SOAPException, Exception {

 LOG.info("Rpc.readEmployee");

 Employee employee = getDao().getEmpl((int)emplNo);

 if (employee == null) {

 throw new SOAPException ("No such employee!");

 }

 return employee;

 }

 @WebMethod

 public long createEmployee(@WebParam (name="employee")Employee employee)

throws Exception {

 LOG.info("Rpc.createEmployee");

 return getDao().createEmpl(employee);

 }

SOAP Style

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

98

A Sample Web Service Application

 @WebMethod

 public boolean updateEmployee(@WebParam (name="employee")Employee employee)

throws Exception {

 LOG.info("Rpc.updateEmployee.");

 return getDao().updateEmpl(employee);

 }

 @WebMethod

 public boolean deleteEmployee(@WebParam(name="emplNo")long emplNo) throws

Exception {

 LOG.info("Rpc.deleteEmployee.");

 return getDao().deleteEmpl((int)emplNo);

 }

 public EmployeeDao getDao() {

 return dao;

 }

 public void setDao(EmployeeDao dao) {

 this.dao = dao;

 }

}

4.2.5 Hosting Web Services

Web Services need to be hosted by a server that provides some basic HTTP service endpoints. Note that

this type of server is rather simplistic in its implementation for the purpose of WS demonstration. A more

industrial-strength application server, such as WebLogic, JBOSS, or WebSphere, is more appropriate for

medium-sized to large business settings.

4.2.5.1 Server.java

his class implements a HTTP server to host multiple Web Services (e.g., HelloWorld,

EmployeeDocDataService and EmployeeRpcDataService). Each WS is uniquely identiied with a

service endpoint.

•	 HelloWorld Web Service: http://localhost:9999/java-ws/hello?WSDL

•	 Employee Document Web Service: http://localhost:9999/doc/employees?wsdl

•	 Employee RPC Web Service: http://localhost:9999/rpc/employees?wsdl

http://localhost:9999/java-ws/hello?WSDL
http://localhost:9999/doc/employees?wsdl
http://localhost:9999/rpc/employees?wsdl
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

99

A Sample Web Service Application

Listing 4-15. Server.java Class

package com.bemach.ws.server;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.util.logging.Logger;

import javax.xml.ws.Endpoint;

import javax.xml.ws.EndpointReference;

import com.bemach.data.DbConig;
import com.bemach.ws.doc.employees.EmployeeDocData;

import com.bemach.ws.hello.HelloWorld;

import com.bemach.ws.rpc.employees.EmployeeRpcData;

/**

 *

 */

public inal class Server {
 private static inal Logger LOG = Logger.getLogger(Server.class.getName());
 private static inal String MYSQL_DRIVER="com.mysql.jdbc.Driver";
 private static inal String DB_HOST = "saintmonica";
 private static inal String DB_PORT = "3306";
 private static inal String DB_SID = "employees";
 private static inal String DB_USER = "empl_1";
 private static inal String DB_PSW = "password";
 private Server() {

 }

 protected static DbConig getDbConig() {
 DbConig dbCfg = new DbConig();
 dbCfg.setDriverName(MYSQL_DRIVER);

 dbCfg.setHost(DB_HOST);

 dbCfg.setPort(DB_PORT);

 dbCfg.setDb(DB_SID);

 dbCfg.setUid(DB_USER);

 dbCfg.setPsw(DB_PSW);

 return dbCfg;

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

100

A Sample Web Service Application

 private static inal String HOST_NAME = "localhost";
 private static inal String PORT_NO = "9999";
 private static inal String HELLO_SVC_NAME = "java-ws/hello";
 private static inal String RPC_EMPL_SVC_NAME = "rpc/employees";
 private static inal String DOC_EMPL_SVC_NAME = "doc/employees";
 private static inal String PROTOCOL = "http";

 protected static SvrConig getSvrConig() {
 SvrConig svrCfg = new SvrConig();
 svrCfg.setListenHostname(HOST_NAME);

 svrCfg.setListenPort(PORT_NO);

 svrCfg.setListenInterface(HELLO_SVC_NAME);

 svrCfg.setListenProtocol(PROTOCOL);

 return svrCfg;

 }

 protected static Endpoint publish(SvrConig cfg, Object svc) {
 String url = String.format("%s://%s:%s/%s",

 cfg.getListenProtocol(),

 cfg.getListenHostname(),

 cfg.getListenPort(),

 cfg.getListenInterface());

 Endpoint ep = Endpoint.publish(url, svc);

 EndpointReference epr = ep.getEndpointReference();

 LOG.info("\nEndpoint Ref:\n"+epr.toString());

 return ep;

 }

 protected static void startHelloWorld() {

 SvrConig cfg = getSvrConig();
 cfg.setListenHostname(HOST_NAME);

 cfg.setListenInterface(HELLO_SVC_NAME);

 cfg.setListenPort(PORT_NO);

 cfg.setListenProtocol(PROTOCOL);

 HelloWorld hello = new HelloWorld();

 publish(cfg, hello);

 LOG.info("HelloWorld service started successfully ...");

 }

 protected static void startRpcEmployees() {

 SvrConig svrCfg = getSvrConig();
 svrCfg.setListenHostname(HOST_NAME);

 svrCfg.setListenInterface(RPC_EMPL_SVC_NAME);

 svrCfg.setListenPort(PORT_NO);

 svrCfg.setListenProtocol(PROTOCOL);

 DbConig dbCfg = getDbConig();
 svrCfg.setDbCfg(dbCfg);

 EmployeeRpcData rpcEmpl = new EmployeeRpcData(dbCfg);

 publish(svrCfg, rpcEmpl);

 LOG.info("Employees (RPC) service started successfully ...");

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

101

A Sample Web Service Application

 protected static void startDocEmployees() {

 SvrConig svrCfg = getSvrConig();
 svrCfg.setListenHostname(HOST_NAME);

 svrCfg.setListenInterface(DOC_EMPL_SVC_NAME);

 svrCfg.setListenPort(PORT_NO);

 svrCfg.setListenProtocol(PROTOCOL);

 DbConig dbCfg = getDbConig();
 svrCfg.setDbCfg(dbCfg);

 EmployeeDocData docEmpl = new EmployeeDocData(dbCfg);

 publish(svrCfg, docEmpl);

 LOG.info("Employees (Document) service started successfully ...");

 }

 /**

 * Start WS Server with multiple service endpoints...

 *

 * @param args

 */

 public static void main(String[] args) {

 startHelloWorld();

 startRpcEmployees();

 startDocEmployees();

 }

}

4.2.5.2 Package the Web Services

his Ant build script builds the java-ws.jar library and stores it in the dist directory. his build requires

two Java libraries: data-svc.jar and mysql-connector-java-5.1.24-bin.jar.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

102

A Sample Web Service Application

Listing 4-16. build.xml for java-ws Java Project

<project name="java-ws" default="dist" basedir=".">

 <description>

 Web Service usign Java.

 </description>

 <!– set global properties for this build –>

 <property environment="env" />

 <path id="classpath.base">

 <ileset dir="./lib" includes="**/*.jar" />
 </path>

 <path id="classpath.compile">

 <path reid="classpath.base" />
 </path>

 <target name="init">

 <mkdir dir="./bin" />

 <mkdir dir="./dist" />

 </target>

 <target name="compile" depends="init" description="compile the source „>

 <javac srcdir="./src" destdir="./bin" debug="true">

 <classpath reid="classpath.compile" />
 </javac>

 </target>

 <target name="dist" depends="compile" description="generate the distribution">

 <!– Create the distribution directory –>

 <jar jarile="./dist/java-ws.jar" basedir="./bin" />

 </target>

 <target name="clean" description="clean up">

 <!– Delete the ${build} directory trees –>

 <delete dir="./dist" />

 <delete dir="./bin" />

 </target>

</project>

he output of this build is a JAR ile stored in the dist directory. he contents of this library consist of

the following elements:

META-INF/

META-INF/MANIFEST.MF

com/

com/bemach/

com/bemach/ws/

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

103

A Sample Web Service Application

com/bemach/ws/doc/

com/bemach/ws/doc/employees/

com/bemach/ws/hello/

com/bemach/ws/rpc/

com/bemach/ws/rpc/employees/

com/bemach/ws/server/

com/bemach/ws/doc/employees/EmployeeDocData.class

com/bemach/ws/hello/HelloWorld.class

com/bemach/ws/rpc/employees/EmployeeRpcData.class

com/bemach/ws/server/Server.class

com/bemach/ws/server/SvrConig.class

4.3 Deploy Web Services

he server instance runs indeinitely. Use control-C to terminate the process. An alternative way to get

the coniguration parameters is to load them from a Java properties ile. Note that, for Windows, the

CLASSPATH separator is semi-colon (;) as opposed to colon (:) on UNIX.

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Introduction to Web Services with Java

104

A Sample Web Service Application

java -cp ./dist/java-ws.jar;../data-svc/dist/data-svc.jar;./lib/mysql-

connector-java-5.1.24-bin.jar com.bemach.ws.server.Server

mysql-connector-java-5.1.24-bin.jar is a JDBC driver for MySQL database.

Next, we use SOAP to test the Web Services.

4.4 Check WSDL and XSD

We produce three services with three distinct service endpoints. Ater the server is running, we verify

that these service endpoints are active and ready for service invocations. From a browser, we go to the

URLs. he service endpoint for the HelloWorld example, http://localhost:9999/java-ws/hello?WSDL, was

examined in earlier chapters. We visit the two employees service endpoints:

4.4.5.1 Document style

WSDL and XSD of the employees Web Service are shown in the following listings. A client application

developer uses these WSDL documents to generate a Web Service stub for use inside their application.

http://localhost:9999/java-ws/hello?WSDL
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

105

A Sample Web Service Application

Listing 4-17. WSDL of a DOCUMENT Style

<deinitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://employees.doc.ws.bemach.com/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://employees.doc.ws.bemach.com/"

 name="EmployeeDocDataService">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://employees.doc.ws.bemach.com/"

 schemaLocation="http://localhost:9999/doc/employees?xsd=1" />

 </xsd:schema>

 <xsd:schema>

 <xsd:import namespace="http://bemach.com"

 schemaLocation="http://localhost:9999/doc/employees?xsd=2" />

 </xsd:schema>

 </types>
/ yp

<message name="getEmployee">
 <part name="parameters" element="tns:getEmployee" />
</message>
<message name="getEmployeeResponse">
 <part name="parameters" element="tns:getEmployeeResponse" />
</message>

< "SOAPE ti ">
 <message name="SOAPException">

 <part name="fault" element="tns:SOAPException" />

 </message>

 <message name="createEmployee">

 <part name="parameters" element="tns:createEmployee" />

 </message>

 <message name="createEmployeeResponse">

 <part name="parameters" element="tns:createEmployeeResponse" />

 </message>

 <message name="updateEmployee">

 <part name="parameters" element="tns:updateEmployee" />

 </message>

 <message name="updateEmployeeResponse">

 <part name="parameters" element="tns:updateEmployeeResponse" />

 </message>

 <message name="deleteEmployee">

 <part name="parameters" element="tns:deleteEmployee" />

 </message>

 <message name="deleteEmployeeResponse">

 <part name="parameters" element="tns:deleteEmployeeResponse" />

 </message>

 <portType name="EmployeeDocData">

 <operation name="getEmployee">

 <input message="tns:getEmployee" />

 <output message="tns:getEmployeeResponse" />

 <fault message="tns:SOAPException" name="SOAPException" />

 </operation>

 <operation name="createEmployee">

 <input message="tns:createEmployee" />

 <output message="tns:createEmployeeResponse" />

 </operation>

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

106

A Sample Web Service Application

 <operation name="updateEmployee">

 <input message="tns:updateEmployee" />

 <output message="tns:updateEmployeeResponse" />

 </operation>

 <operation name="deleteEmployee">

 <input message="tns:deleteEmployee" />

 <output message="tns:deleteEmployeeResponse" />

 </operation>

 </portType>

 <binding name="EmployeeDocDataPortBinding" type="tns:EmployeeDocData">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

 style="document" />

<operation name="getEmployee">
<soap:operation soapAction="" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>
<fault name="SOAPException">

<soap:fault name="SOAPException" use="literal" />
</fault>

</operation>

Style

 <operation name="createEmployee">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 </operation>

 <operation name="updateEmployee">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 </operation>

 <operation name="deleteEmployee">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 </operation>

 </binding>

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

107

A Sample Web Service Application

 <service name="EmployeeDocDataService">

 <port name="EmployeeDocDataPort" binding="tns:EmployeeDocDataPortBinding">

 <soap:address location="http://localhost:9999/doc/employees" />

 </port>

 </service>

</deinitions>

Consider the operation getEmployee (highlighted). his operation has one input and one output

element. hese elements are deined in the message area above. hese messages are getEmployee and

getEmployeeResponse, which are of tns:getEmployee and tns:getEmployeeResponse types, respectively.

he types are deined in the schema located at http://localhost:9999/doc/employees?xsd=1. See

highlighted area.

URL for associated schema:

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE฀

AXA GLOBAL GRADUATE฀
PROGRAM 2015฀

http://localhost:9999/doc/employees?xsd=1
http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Introduction to Web Services with Java

108

A Sample Web Service Application

Listing 4-18. Schema (XSD) of a Web Service

<xs:schema xmlns:tns="http://employees.doc.ws.bemach.com/"

 xmlns:ns1="http://bemach.com" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 version="1.0" targetNamespace="http://employees.doc.ws.bemach.com/">

 <xs:import namespace="http://bemach.com"

 schemaLocation="http://localhost:9999/doc/employees?xsd=2" />

 <xs:element name="SOAPException" type="tns:SOAPException" />

 <xs:element name="createEmployee" type="tns:createEmployee" />

 <xs:element name="createEmployeeResponse" type="tns:createEmployeeResponse" />

 <xs:element name="deleteEmployee" type="tns:deleteEmployee" />

 <xs:element name="deleteEmployeeResponse" type="tns:deleteEmployeeResponse" />

 <xs:element name="getEmployee" type="tns:getEmployee" />

 <xs:element name="getEmployeeResponse" type="tns:getEmployeeResponse" />

 <xs:element name="updateEmployee" type="tns:updateEmployee" />

 <xs:element name="updateEmployeeResponse" type="tns:updateEmployeeResponse" />

 <xs:complexType name="deleteEmployee">

 <xs:sequence>

 <xs:element name="emplNo" type="xs:long" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="deleteEmployeeResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:boolean" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="createEmployee">

 <xs:sequence>

 <xs:element name="employee" type="tns:employee" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>p yp

<xs:complexType name="employee">
<xs:sequence>

<xs:element name="emplNo" type="xs:long" />
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="birthDate" type="xs:dateTime" />
<xs:element name="gender" type="xs:string" />
<xs:element name="hireDate" type="xs:dateTime" />

</xs:sequence>
</xs:complexType>

 <xs:complexType name="createEmployeeResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:long" />

 </xs:sequence>

 </xs:complexType>p yp

<xs:complexType name="getEmployee">
<xs:sequence>

<xs:element name="emplNo" type="xs:long" />
</xs:sequence>

</xs:complexType>
<xs:complexType name="getEmployeeResponse">

<xs:sequence>
<xs:element name="return" type="tns:employee" minOccurs="0" />

</xs:sequence>
</xs:complexType>

i

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

109

A Sample Web Service Application

 <xs:complexType name="SOAPException">

 <xs:sequence>

 <xs:element name="message" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="updateEmployee">

 <xs:sequence>

 <xs:element name="employee" type="tns:employee" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="updateEmployeeResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:boolean" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

4.4.5.2 RPC Style

he diference between the WSDLs of RPC and Document styles can be diicult to detect; however,

XSDs are visibly diferent. All data types for the document style are deined using XML schema, while

all the simple data types (e.g., integer, long, string) are deined within the WSDL.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Introduction to Web Services with Java

110

A Sample Web Service Application

Listing 4-19. WSDL of a RPC Style

<deinitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://employees.rpc.ws.bemach.com/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://employees.rpc.ws.bemach.com/"

 name="EmployeeRpcDataService">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://employees.rpc.ws.bemach.com/"

 schemaLocation="http://localhost:9999/rpc/employees?xsd=1" />

 </xsd:schema>

 <xsd:schema>

 <xsd:import namespace="http://bemach.com“

 schemaLocation="http://localhost:9999/rpc/employees?xsd=2" />

 </xsd:schema>

 </types>

 <message name="getEmployee">

 <part name="emplNo" type="xsd:long" />

 </message>

 <message name="getEmployeeResponse">

 <part name="return" type="tns:employee" />

 </message>

 <message name="SOAPException">

 <part name="fault" element="tns:SOAPException" />

 </message>

 <message name="createEmployee">

 <part name="employee" type="tns:employee" />

 </message>

 <message name="createEmployeeResponse">

 <part name="return" type="xsd:long" />

 </message>

 <message name="updateEmployee">

 <part name="employee" type="tns:employee" />

 </message>

 <message name="updateEmployeeResponse">

 <part name="return" type="xsd:boolean" />

 </message>

 <message name="deleteEmployee">

 <part name="emplNo" type="xsd:long" />

 </message>

 <message name="deleteEmployeeResponse">

 <part name="return" type="xsd:boolean" />

 </message>

 <portType name="EmployeeRpcData">

 <operation name="getEmployee">

 <input message="tns:getEmployee" />

 <output message="tns:getEmployeeResponse" />

 <fault message="tns:SOAPException" name="SOAPException" />

 </operation>

 <operation name="createEmployee">

 <input message="tns:createEmployee" />

 <output message="tns:createEmployeeResponse" />

 </operation>

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

111

A Sample Web Service Application

 <operation name="updateEmployee">

 <input message="tns:updateEmployee" />

 <output message="tns:updateEmployeeResponse" />

 </operation>

 <operation name="deleteEmployee">

 <input message="tns:deleteEmployee" />

 <output message="tns:deleteEmployeeResponse" />

 </operation>

 </portType>

 <binding name="EmployeeRpcDataPortBinding" type="tns:EmployeeRpcData">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

 style="rpc" />

 <operation name="getEmployee">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </input>

 <output>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </output>

 <fault name="SOAPException">

 <soap:fault name="SOAPException" use="literal" />

 </fault>

 </operation>

 <operation name="createEmployee">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </input>

 <output>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </output>

 </operation>

 <operation name="updateEmployee">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </input>

 <output>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </output>

 </operation>

 <operation name="deleteEmployee">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </input>

 <output>

 <soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />

 </output>

 </operation>

 </binding>

Style

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

112

A Sample Web Service Application

 <service name="EmployeeRpcDataService">

 <port name="EmployeeRpcDataPort" binding="tns:EmployeeRpcDataPortBinding">

 <soap:address location="http://localhost:9999/rpc/employees" />

 </port>

 </service>

</deinitions>

Unlike the document style, the XSD documents for the RPC style are kept simple. Most of the basic data

types are deined inside the WSDL instead of in the XSD.

Listing 4-20. XSD of a Web Service (RPC)

<xs:schema xmlns:tns="http://employees.rpc.ws.bemach.com/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0"

 targetNamespace="http://employees.rpc.ws.bemach.com/">

 <xs:element name="SOAPException" type="tns:SOAPException" />

 <xs:complexType name="employee">

 <xs:sequence>

 <xs:element name="emplNo" type="xs:long" />

 <xs:element name="irstName" type="xs:string" />
 <xs:element name="lastName" type="xs:string" />

 <xs:element name="birthDate" type="xs:dateTime" />

 <xs:element name="gender" type="xs:string" />

 <xs:element name="hireDate" type="xs:dateTime" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="SOAPException">

 <xs:sequence>

 <xs:element name="message" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Listing 4-21. An Additional XSD of a Web Service

<xs:schema xmlns:ns1="http://employees.rpc.ws.bemach.com/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0"

 targetNamespace="http://bemach.com">

 <xs:import namespace="http://employees.rpc.ws.bemach.com/"

 schemaLocation="http://localhost:9999/rpc/employees?xsd=1" />

 <xs:element name="EmployeeService" type="ns1:employee" />

</xs:schema>

4.5 Test Web Services with SOAPUI

First, create a SOAPUI project for each of the WS endpoints. hen, run the operation of each Web Service.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

113

A Sample Web Service Application

4.5.1 SOAPUI projects

Web Service can be tested using SOAPUI, which is an open source cross-platform functional testing

tool that can be used to test Web Services. Like Eclipse, SOAPUI is organized into projects. Each project

usually manages one service endpoint. Each service endpoint contains one or more operations that can

be called from a client machine. In order to test a Web Service, all you really need is a service endpoint

URL provided by your service provider.

he following igure shows how to create a SOAPUI test project for the employees data service with

document style at this service endpoint: http://localhost:9999/doc/employees?WSDL.

Figure 4-13. Create a SOAPUI Project

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your

topic area. Find out what you can do to improve

the quality of your dissertation!

http://localhost:9999/doc/employees?WSDL
http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Introduction to Web Services with Java

114

A Sample Web Service Application

Once the project has been created, a set of operations will appear, as shown in the following igures.

Note that you can now start testing these WS operations. In our example, four operations are visible:

createEmployee, deleteEmployee, getEmployee, and updateEmployee.

Operatio

Figure 4-14. List of Oerations of a Web Service

Double-clicking on Request1 of the createEmployee operation will cause a multi-pane window to be

displayed. You can ill in the parameters and run the test by clicking on the green triangle to the let panel.

Click here Return here

Figure 4-15. Execute a SOAP Operations

Other operations of the service can be tested in the same way.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

115

A Sample Web Service Application

Web Service with an RPC style can be tested in a similar way. he only diference is that when you create

a SOAPUI project, you provide a diferent service endpoint (URL). A SOAPUI project can be created

for EmployeeData service with RPC style as follows:

Figure 4-16. Create a new SOAPUI Project

4.6 Develope a Web Service Consumer

Developing a WS consumer (or client) involves three major activities: creating a client stub, creating a

client code that uses the client stub to call service operations, and running the client. hese activities

are described as follows.

By 2020, wind could provide one-tenth of our planet’s

electricity needs. Already today, SKF’s innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-

nance. These can be reduced dramatically thanks to our

systems for on-line condition monitoring and automatic

lubrication. We help make it more economical to create

cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,

industries can boost performance beyond expectations.

Therefore we need the best employees who can

meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introduction to Web Services with Java

116

A Sample Web Service Application

Start

Create Client

Stub

Create Client

Code
Run Client

End

Figure 4-17. Activities for Creating a Web Service Client

4.6.1 Creating Client Stub with wsimport

Writing a SOAP client with SAAJ can be complex and time-consuming. See section 2.4 for details.

Instead, we will use the wsimport tool to generate WS artifacts (stubs).

First, create a Java Project under Eclipse IDE and call it ‘java-ws-client’.

1. At the command prompt, go to the Java Project for Eclipse called ‘java-ws-client’.

2. Create a folder called ‘generated’.

3. To generate WS stubs, run the following commands:

wsimport -d . http://localhost:9999/doc/employees?WSDL

wsimport -d . http://localhost:9999/rpc/employees?WSDL

wsimport -d . http://localhost:9999/java-ws/hello?WSDL

4. To create a Java library, run the following command:

jar –cvf ../lib/java-ws-generated.jar *

5. To verify the content of the created jar, run this command:

jar –tf ../lib/java-ws-generated.jar *

he content of the library should appears as follows:

META-INF/

META-INF/MANIFEST.MF

com/

com/bemach/

com/bemach/ObjectFactory.class

com/bemach/ws/

com/bemach/ws/doc/

com/bemach/ws/doc/employees/

com/bemach/ws/doc/employees/CreateEmployee.class

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

117

A Sample Web Service Application

com/bemach/ws/doc/employees/CreateEmployeeResponse.class

com/bemach/ws/doc/employees/DeleteEmployee.class

com/bemach/ws/doc/employees/DeleteEmployeeResponse.class

com/bemach/ws/doc/employees/Employee.class

com/bemach/ws/doc/employees/EmployeeDocData.class

com/bemach/ws/doc/employees/EmployeeDocDataService.class

com/bemach/ws/doc/employees/GetEmployee.class

com/bemach/ws/doc/employees/GetEmployeeResponse.class

com/bemach/ws/doc/employees/ObjectFactory.class

com/bemach/ws/doc/employees/package-info.class

com/bemach/ws/doc/employees/SOAPException.class

com/bemach/ws/doc/employees/SOAPException_Exception.class

com/bemach/ws/doc/employees/UpdateEmployee.class

com/bemach/ws/doc/employees/UpdateEmployeeResponse.class

com/bemach/ws/hello/

com/bemach/ws/hello/HelloWorld.class

com/bemach/ws/hello/HelloWorldService.class

com/bemach/ws/hello/ObjectFactory.class

com/bemach/ws/hello/package-info.class

com/bemach/ws/hello/Say.class

com/bemach/ws/hello/SayResponse.class

com/bemach/ws/rpc/

com/bemach/ws/rpc/employees/

com/bemach/ws/rpc/employees/Employee.class

com/bemach/ws/rpc/employees/EmployeeRpcData.class

com/bemach/ws/rpc/employees/EmployeeRpcDataService.class

com/bemach/ws/rpc/employees/ObjectFactory.class

com/bemach/ws/rpc/employees/package-info.class

com/bemach/ws/rpc/employees/SOAPException.class

com/bemach/ws/rpc/employees/SOAPException_Exception.class

hese commands generate java binary code that can become part of a client program that calls Web

Services. Next, we create a Java library that contains the generated code: java-ws-generated.jar. his library

should be included as part of a library set for the Eclipse IDE. It is also a part of the Java CLASSPATH

during execution.

4.6.2 Create Client Code

We present two types of client code – document style and RPC style. Both are commonly used in WS

programming today; however, document style is preferred.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

118

A Sample Web Service Application

Ater the coding has been completed, the java-ws-client project should look like this:

Figure 4-18. Screenshot of java-ws-client Java Project

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introduction to Web Services with Java

119

A Sample Web Service Application

4.6.2.1 EmployeesDocClient.java

his client code uses the generated client stub for making WS calls to the remote server. One important

class is the QName, where we create a qualiied name that contains the targetNamespace and the name

attributes of the deinitions element of the WSDL. he next important class is the URL where we create

a service endpoint as the location attribute of the soap:address element of the WSDL. From these two

classes, we can then create a service which we map onto the set of operations that the service provides.

Mapping the port onto the EmployeeDocData is speciied as a type attribute of the binding element

within the WSDL. Once we get the port, we can call the operations as we did with the local method

invocation in Java.

Listing 4-22. EmployeesDocClient.java Class

package com.bemach.ws.employees.client;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.net.MalformedURLException;

import java.net.URL;

import java.util.logging.Logger;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

import com.bemach.ws.doc.employees.Employee;

import com.bemach.ws.doc.employees.EmployeeDocData;

import com.bemach.ws.doc.employees.SOAPException_Exception;

import com.bemach.ws.rpc.employees.EmployeeRpcDataService;

/**

 * This code relies on ws client generated code using wsimport program:

 * wsimport -d . http://localhost:9999/doc/employees?WSDL

 * wsimport -d . http://localhost:9999/rpc/employees?WSDL

 * wsimport -d . http://localhost:9999/ch-1/HelloWorld?WSDL

 *

 * jar cvf ../ws-ch-1-generated.jar *

 *

 */

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

120

A Sample Web Service Application

public class EmployeesDocClient {

 private static inal Logger LOG = Logger.getLogger(EmployeesDocClient.
class.getName());

 private EmployeeDocData emplDs = null;

 public EmployeesDocClient(String urlStr, String targetNs, String name)

 throws MalformedURLException {

 LOG.info("Constructor ...");

 QName qName = new QName(targetNs, name);

 URL url = new URL(urlStr);

 Service service = EmployeeRpcDataService.create(url, qName);

 emplDs = service.getPort(EmployeeDocData.class);

 }

 public Employee get(long id) throws SOAPException_Exception {

 return emplDs.getEmployee(id);

 }

 public long create(Employee empl) {

 return emplDs.createEmployee(empl);

 }

 public boolean delete(long id) {

 return emplDs.deleteEmployee(id);

 }

 public boolean update(Employee empl) {

 return emplDs.updateEmployee(empl);

 }

 /**

 * @param args

 * @throws MalformedURLException

 * @throws SOAPException_Exception

 */

 public static void main(String[] args)

 throws MalformedURLException, SOAPException_Exception {

 LOG.info("Calling Employee (Document) data service ... ");

 String targetNameSpace = "http://employees.doc.ws.bemach.com/";

 String name = "EmployeeDocDataService";

 String urlStr = String.format("http://localhost:%s/doc/

employees",args[0]);

 EmployeesDocClient cli = new EmployeesDocClient(urlStr, targetNam-

eSpace, name);

 long oldEmplNo = Integer.valueOf(args[1]);

 Employee empl = cli.get(oldEmplNo);

 LOG.info("last="+empl.getLastName());

 LOG.info("hire="+empl.getHireDate());

 LOG.info("last="+empl.getLastName());

 LOG.info("irst="+empl.getFirstName());

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

121

A Sample Web Service Application

 empl.setFirstName("Silvester");

 empl.setLastName("Johnny");

 long newEmplNo = cli.create(empl);

 LOG.info("emplNo="+newEmplNo);

 Employee newEmpl = cli.get(newEmplNo);

 newEmpl.setLastName("New-name");

 newEmpl.setEmplNo(newEmplNo);

 boolean status = cli.update(newEmpl);

 LOG.info("update:"+status);

 LOG.info("last="+newEmpl.getLastName());

 LOG.info("irst="+newEmpl.getFirstName());

 status = cli.delete(newEmplNo);

 LOG.info("deleteEmployee:"+status);

 LOG.info("Exit!");

 }

}

4.6.2.2 EmployeesRpcClient.java

his class is nearly identical to that of the document-style client code. hus, any diference between the

two styles of client code is nearly impossible to notice at this level. he signiicant diference is in the

coding within the SOAP engine on the client side.

Listing 4-23. EmployeesRpcClient.java Class

package com.bemach.ws.employees.client;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.net.MalformedURLException;

import java.net.URL;

import java.util.logging.Logger;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

import com.bemach.ws.rpc.employees.Employee;

import com.bemach.ws.rpc.employees.EmployeeRpcData;

import com.bemach.ws.rpc.employees.EmployeeRpcDataService;

import com.bemach.ws.rpc.employees.SOAPException_Exception;

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

122

A Sample Web Service Application

/**

 * This code relies on ws client generated code using wsimport program:

 * wsimport -d . http://localhost:9999/rpc/Employees?WSDL

 * jar cvf ../ws-ch-1-generated.jar *

 *

 */

public class EmployeesRpcClient {

 private static inal Logger LOG = Logger.getLogger(EmployeesRpcClient.
class.getName());

 private EmployeeRpcData emplDs = null;

 public EmployeesRpcClient(String urlStr, String targetNs, String name)

throws MalformedURLException {

 LOG.info("Constructor ...");

 QName qName = new QName(targetNs, name);

 URL url = new URL(urlStr);

 Service service = EmployeeRpcDataService.create(url, qName);

 emplDs = service.getPort(EmployeeRpcData.class);

 }

 public Employee get(long id) throws SOAPException_Exception {

 return emplDs.getEmployee(id);

 }

 public long create(Employee empl) {

 return emplDs.createEmployee(empl);

 }

 public boolean delete(long id) {

 return emplDs.deleteEmployee(id);

 }

 public boolean update(Employee empl) {

 return emplDs.updateEmployee(empl);

 }

 /**

 * @param args

 * @throws MalformedURLException

 * @throws SOAPException_Exception

 */

 public static void main(String[] args)

 throws MalformedURLException, SOAPException_Exception {

 LOG.info("Calling Employee (RPC) data service ... ");

 String targetNameSpace = "http://employees.rpc.ws.bemach.com/";

 String name = "EmployeeRpcDataService";

 String urlStr = String.format("http://localhost:%s/rpc/employees",args[0]);

 EmployeesRpcClient cli = new EmployeesRpcClient(urlStr, targetNameSpace, name);

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

123

A Sample Web Service Application

 long oldEmplNo = Integer.valueOf(args[1]);

 Employee empl = cli.get(oldEmplNo);

 LOG.info("last="+empl.getLastName());

 LOG.info("hire="+empl.getHireDate());

 LOG.info("last="+empl.getLastName());

 LOG.info("irst="+empl.getFirstName());

 empl.setFirstName("Silvester");

 empl.setLastName("Johnny");

 long newEmplNo = cli.create(empl);

 LOG.info("emplNo="+newEmplNo);

 Employee newEmpl = cli.get(newEmplNo);

 newEmpl.setLastName("New-name");

 newEmpl.setEmplNo(newEmplNo);

 boolean status = cli.update(newEmpl);

 LOG.info("update:"+status);

 LOG.info("last="+newEmpl.getLastName());

 LOG.info("irst="+newEmpl.getFirstName());

 status = cli.delete(newEmplNo);

 LOG.info("deleteEmployee:"+status);

 LOG.info("Exit!");

 }

}

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introduction to Web Services with Java

124

A Sample Web Service Application

4.6.3 Run the Client Application

With each of the client codes, we implemented one of the main methods for unit-testing purposes. Each

in this class can run as a standalone Java application. To run these applications, the following command

is used:

java -cp java-ws-client.jar;./lib/java-ws-generated.jar com.bemach.

ws.employees.client.EmployeesDocClient

or

java -cp java-ws-client.jar;./lib/ws-ch-1-generated.jar com.bemach.

ws.employees.client.EmployeesRpcClient

http://bookboon.com/

