4 A Sample Web Service
Application

Objectives

After completing this chapter, you should be able to:

Write a Web Service that provides access to employee records stored in a relational database
Write a Web Service using JDK 6 or above

Publish a Web Service using basic Java Endpoint class

Test a Web Service with SOAPUI testing tool

Use wsimport to generate a Web Service stub for the client

SN e

Write a simple Web Service consumer to invoke a Web Service

4.1 A Sample application

Welcome to the world of Web Services! You may find this chapter technically challenging at first; however,
as you work your way through the examples, you will find that the same patterns are used repeatedly
throughout. If you think of writing Web Services as similar to writing any other Java class, that may help

to ease any anxiety about the difficulty of this task.

In this application, we deploy a simple SOAP server using basic Java JDK delivery. In order to make
this application work, you will need the following software packages that can be downloaded from the

Internet (more instructions are included in Appendix A).

e Java JDK 6
o MySQL Community Server 5.6
o MySQL Employees sample database

« MySQL JDBC driver
IP (localhost),
port 9999

HTTP >

SOAP Messages

MysaL
database

Client application Content Java standalone
(SOAP Client) format server

Figure 4-1. A n-tier application

Download free eBooks at bookboon.com

http://bookboon.com/

A ‘WS application is created using a Java framework to enable a WS consumer to manipulate employee
records stored in a relational database. Accessing the database from a Web server is accomplished using
JDBC technology. MySQL is the relational database used for this example. The transport protocol for
the WS is HTTP.

To avoid adding complexity to an already complicated concept, security concerns are not considered
in this example. Accessing the database from a remote machine (i.e., WS client) without proper
authentication is not a good practice; however, in this application, accessing the database with fixed
user ID and password is a matter of simplicity, not security. Furthermore, the use of the data source is
much more efficient using direct JDBC calls, however, the sample code does not follow that standard

convention.

The basic Java Endpoint class does not scale well in a business computing environment, but it is used
here to allow the simplest Java environment capable of supporting a simple WS application. In later
chapters, you can apply similar programming principles and techniques for WS programming to deploy
WS applications on an Apache Tomcat or an Oracle WebLogic server. These two servers are covered in

Chapters 5 and 6, respectively.

Remember, the central idea of this chapter in terms of WS programming is how to get data from the

database through the use of WS technology, and SOAP in particular.

4.1.1 Use Case Diagram

Consider the following use case diagram for this sample application. From the perspectives of WS clients,
it invokes four operations of an employee data service. Basic data exchange includes two major data

types: employee number and employee record.

A resource can be created, read (or obtained), updated (or changed), and deleted. The concept of CRUD
has been fundamental to computer programming since the beginning of the field computer science. We
have a set of employee records stored in a database, and we want to manipulate them from a remote

machine using SOAP via WS technology.

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

EmployeesDataService

Create Employee
N E— Update Employee
S
Service Get Employee
Consumer

Delete Employee

Figure 4-2. Use Cases

Use Case 1: Create Employee
Primary Actor: Service Consumer

Main Success Scenario:

1. An end-user enters required employee information.

2. The service consumer then verifies the information.

3. The service consumer then calls the employees data service to create a new employee.
4

. The service consumer presents a new employee number to the end-user.

Use Case 2: Update Employee
Primary Actor: Service Consumer

Main Success Scenario:

. An end-user updates the required employee information.
. The service consumer then verifies the information.

. The service consumer then calls the employees data service for the update.

B~ W N

. The service consumer informs the end-user about the status of the update.

Use Case 3: Get (Read) Employee
Primary Actor: Service Consumer

Main Success Scenario:

1. An end-user enters an employee number.

2. The service consumer then validates the number.

3. The service consumer then calls the employees data service to retrieve the employee record.
4. The service consumer presents the employee record to the end-user.

Download free eBooks at bookboon.com

59

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Use Case 4: Delete Employee
Primary Actor: Service Consumer

Main Success Scenario:

. An end-user enters an employee number.
. The service consumer then validates the number.

. The service consumer then calls the employees data service to remove the employee record.

[NI NS T)

. The service consumer informs the end-user about the status of the deletion.

A SOAP exception is thrown in when an error condition occurs.

4.1.2 Sequence Diagram

In a typical WS call, many layers of software are involved; however, at a high level, the sequence of actions

may be represented as in the following sequence diagram.

Service
Consumer
[
|

SOAP SOAP Emplovees Emol
Engine Engine S:rviyce mnggee Database
(Client) ()
[[[

getEmployee(|

getEmployee()—P»y

o
o
™
3

=3
5]

2
]

2

|

|
| |
| |
| |
| |
| |
| |
Figure 4-3. Sequence diagram of a getEmployee operation

Since all four operations are the basic request-response type of message exchange, a single sequence

diagram of getEmployee operation is shown.

Download free eBooks at bookboon.com

60

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

A consumer, when ready, invokes a SOAP engine on the client side to begin a SOAP call across the
network. In this scenario, the consumer understands the SOAP message fully and constructs a SOAP
message using SOAP with Attachment API for Java (SAAJ). Once a SOAP message is formed, the SOAP
engine sends the message to the remote server via HTTP. After successfully receiving the message, the
server processes the request by invoking the appropriate business or data services in the backend. In this
case, the getEmployee method of the employees service is invoked. Before the data access layer is called,
additional business logic processing can be done in this class to manipulate the data. EmployeeDAO is
a component that interacts directly with the database using JDBC for data processing. The data source

may not always be a relational database.

Once the processing is completed, the employees service, with the help of the WS package, forms a SOAP
message and returns to the SOAP engine on the server side. As a part of the request-response message
exchange pattern, the response is then returned to the SOAP engine on the client side. Once the client

SOAP engine successfully receives the message, it returns to the Service Consumer for final processing.

The process of forming a SOAP message is often called ‘marshalling’. Conversely, the process of decoding

a SOAP message into a native form for further processing is called ‘unmarshalling’

This sequence diagram shows an example of a synchronous message exchange. In other words, activities
in this diagram occur in sequence. In some cases, the processing may take a long time, and the server may
return immediately before the processing completes. This is a form of asynchronous message exchange.
When the server has completed processing the request, it may initiate a call to the client to return the
response with the actual data or simply a notification. The client can also periodically poll the server for
data. The second option suffers two problems. If the timing window between two polls is too large, the

delay can be significant. If it is small, it wastes valuable processing power on both sides.

4.1.3 Deployment Diagram

The simple deployment of this WS application is depicted as follows:

WS Endpoint
<<Client>> <<Server>> P omeY

i EmployeesData MySQ
<<Library>> <<Library>>
java-ws-client.jar java-ws.jar

1
SIS <<schema>>
-

<<Library>> <<Library>> SIS employees

Jjava-ws-generated.jar data-svc.jar

Figure 4-4. A Simple Deployment Diagram

Download free eBooks at bookboon.com

61

http://bookboon.com/

In a real-world application, an IT organization may deploy a complex mesh of servers and databases to
manage their WS activities. There can be many client applications. In this sample WS application, we
create an environment that includes a client machine, a server machine, and a database machine. These

machines can be virtual, which means that all three can be hosted by a single physical machine.

On the server side, we develop two sets of Java libraries — java-ws.jar and data-svc.jar. The first contains
the WS code that interacts with the client over the network protocol HTTP. The second deals with the
database access via JDBC calls with the help of MySQL driver code written by MySQL database developers.

Together, they comprise a complete application.
On the client side, we develop a Java library that contains the WS client code, java-ws-client.jar. We use
wsimport to generate the second library, java-ws-generated.jar. This second library contains all of the

necessary code to interact with the server WS engine.

4.14 JDBC URL

To access a relational database from a Java application, a database connection must be established using
a JDBC URL with the following format:

jdbc:<subprotocol>:<subname>
where
o <subprotocol> is the name of the driver that was registered with Oracle. In this application,
‘mysql’ is used.
o <subname> is the identification of the resource. It has the following format:
//host:port/subsubname
subsubname consists of the database schema name, user identification and password.
In this example, a full JDBC URL can be written as:
jdbc:mysql://localhost:3306/employees?user=empl_1&password=password
In order to access the database via JDBC connection, a database account was created and assigned to
the employees database. It has all privileges to the employees database. The MySQL default access port

is 3306. Before you run the SOAP server program, make sure to download a JDBC driver and include

the driver in your Javas classpath.

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

4.1.4.1 DbConfig.java

In this sample code, the default values to connect to the MySQL database are (see DbConnection.java):

Hostname | Saintmonica

Port number | 3306

Account | empl 1

Password | Password

Database name | Employees

JDBC driver name | com.mysgl.jdbc.Driver

Subprotocol | Mysgl

Table 1. Database Configuration Parameters

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new

markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Download free eBooks at bookboon.com

63 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Introduction to Web Services with Java A Sample Web Service Application

Listing 41. DbConfig.java class

package com.bemach.data;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “WAS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

/**

* Make sure to download MySQL JDBC Driver from the website
* Extract it, and include this file (name may be changed between

* release): mysgl-connector-java-5.1.24-bin.jar into your classpath
*
*/
public class DbConfig {
private String subprot = "mysqgl";
private String host = "saintmonica";
private String port = "3306";
private String db = "employees";
private String uid = "empl 1";
private String psw = "password";
private String driverName = "com.mysqgl.jdbc.Driver";

public String getSubprot () {
return subprot;

public void setSubprot (String subprot) {
this.subprot = subprot;

public String getDriverName () {
return driverName;

public void setDriverName (String driverName) {
this.driverName = driverName;

public String getHost () {
return host;

public void setHost (String host) {
this.host = host;

Download free eBooks at bookboon.com

64

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

public String getPort() {
return port;

public void setPort (String port) {
this.port = port;

public String getDb () {
return db;

public void setDb(String db) {
this.db = db;

public String getUid() {
return uid;

public void setUid(String uid) {
this.uid = uid;

public String getPsw() {
return psw;

public void setPsw(String psw) {
this.psw = psw;

For the application, the DbConfigure class is a placeholder for all necessary configuration parameters

for connecting to to the MySQL database.

4.1.5 Web Service Endpoint

A WS must be published via a unique service endpoint in order to be accessed by a WS client. A URL
is a pointer to an available resource. This unique service endpoint can be stated using a URL with the

following format:
<scheme>:<hier-part>?query
where

o <scheme> is http protocol

o <hier-part> is //host:port/path

Download free eBooks at bookboon.com

65

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

In this example, the service endpoint is defined as:

http://localhost:9999/doc/employees

and

http://localhost:9999/rpc/employees

4.1.5.1 SvrConfig.java

For HTTP connectivity to be used for SOAP, the sample code must use the following default values:

Hostname | locahost
Port number | 9999
Protocol | http

Table 2. Server Configuration Parameters

Deloitte.

Discover the truth at WWW.dClOittC.Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.

Download free eBooks at bookboon.com

66 Click on the ad to read more

http://localhost:9999/doc/employees
http://localhost:9999/rpc/employees
http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-2. SvrConfig.java class

package com.bemach.ws.server;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “WAS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*

~

import com.bemach.data.DbConfig;

/**
* Make sure to download MySQL JDBC Driver from the website
* Extract it, and include this file (name may be changed between

* release): mysgl-connector-java-5.1.24-bin.jar into your classpath
*

*/
public class SvrConfig {
private String listenHostname = "localhost";
private String listenPort = "9999";
private String listenInterface = "HelloWorld";
private String listenProtocol = "http";

private DbConfig dbCfg = new DbConfig () ;
public DbConfig getDbCfg() {

return dbCfg;

public void setDbCfg (DbConfig dbCfg) {
this.dbCfg = dbCfg;

public String getListenHostname () {
return listenHostname;

public void setListenHostname (String listenHostname) {
this.listenHostname = listenHostname;

public String getListenPort () {
return listenPort;

public void setListenPort (String listenPort) {
this.listenPort = listenPort;

public String getListenInterface() {
return listenInterface;

Download free eBooks at bookboon.com

67

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

public void setlListenlInterface(String listenInterface) {
this.listenInterface = listenInterface;

}

public String getListenProtocol () {
return listenProtocol;
}

public void setListenProtocol (String listenProtocol) {
this.listenProtocol = listenProtocol;

}

The SvrConfig class consists of information that is used to form a service endpoint for both styles —
document and RPC. Furthermore, the class contains the configuration parameters that the data access

code uses in order to access the database.

4.1.6 About the employees’ sample database from MySQL

The employees database is a sample database from MySQL. The database schema was developed by
professor Chua Hock Chuan at Nanyan Technological University in Singapore. The site cat be visited at

http://www.ntu.edu.sg/home/ehchua/programming/sgl/SampleDatabases.html.

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

}ri I % i
xl] 5‘ 1!1

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

68 Click on the ad to read more

http://www.ntu.edu.sg/home/ehchua/programming/sql/SampleDatabases.html
http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Introduction to Web Services with Java

| salaries ¥
emp_no INT(10)
2 salary INT{11)

from _date DATE
to_date DATE j ﬂ“[‘.m
= emp_no INT{10)
4| 7 birth_date DATE
*first_name VARCHAR{ 1)
_| titles v

emp_no INT (10}
title VARCHAR{S0)
from _date DATE

* to_date DATE

Figure 4-5. Database Schema (Chua Hock Chuan)

*|last_name VARCHAR(16)
H <+ gender ENUM(M','F)
hire_date DATE

¥

A Sample Web Service Application

Lul dept_manager ¥
dept_no CHAR{<)
emp_no INT(10)

* from _date DATE
*to_date DATE
>
_| departments ¥
dept_no CHAR{4)
#dept_name VARCHAR{40)
| 3
_| dept_emp ¥

emp_no INT{10)
dept_no CHAR(4)

*to_date DATE
>

"‘ from _date DATE

In this sample application, we use only the employees table. This table can be created using the following

DDL:

Listing 4-3. Employees Table Definition

CREATE TABLE employees (
emp_no INT
birth_date DATE
first_name VARCHAR(14)
last_name VARCHAR(16)
gender ENUM ('M','F")
hire_date DATE
PRIMARY KEY (emp_no)

NOT
NOT
NOT
NOT
NOT
NOT

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

Download free eBooks at bookboon.com

69

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

All fields of the employees table are required with the primary key being the employee number. The

employees data record can be represented by Employee class in Java. This class is defined as follows:

4.1.6.1 Employee.java

We create an Employee data object that contains an employee record. Employee is a Java class that uses
Java Architecture for XML Binding (JAXB) annotations to assist the marshalling process. JAXB allows
Java developer to use Java API to read and write objects to and from an XML document. It eases the
process of reading and writing XML documents in Java. In particular, the annotation provides a simpler

mechanism for the SOAP engine to transform Java objects into XML and vice versa.

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

.

bl i B
vi B e RPE

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

Download free eBooks at bookboon.com

70 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-4. Employee.java Class

package com.bemach.data;
/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.io.Serializable;
import java.util.Calendar;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@XmlRootElement (name="EmployeeService", namespace="http://bemach.com")
@XmlAccessorType (XmlAccessType. FIELD)
@XmlType (name="employee")

public class Employee implements Serializable({
private static final long serialVersionUID = 1L;
@XmlElement (required=true)
private long emplNo;
@XmlElement (required=true)
private String firstName;
@XmlElement (required=true)
private String lastName;
@XmlElement (required=true)
private Calendar birthDate;
@XmlElement (required=true)
private String gender;
@XmlElement (required=true)
private Calendar hireDate;

public long getEmplNo () {
return emplNo;

}

public void setEmplNo (long emplNo) {
this.emplNo = emplNo;

}

public String getFirstName () {
return firstName;

}

public void setFirstName (String firstName) {
this.firstName = firstName;

Download free eBooks at bookboon.com

71

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

public String getLastName () {
return lastName;

}

public void setLastName (String lastName) {
this.lastName = lastName;

}

public Calendar getBirthDate () {
return birthDate;

}

public void setBirthDate (Calendar birthDate) {
this.birthDate = birthDate;

}

public String getGender () {
return gender;

}

public void setGender (String gender) {
this.gender = gender;

}

public Calendar getHireDate () {
return hireDate;

}

public void setHireDate (Calendar hireDate) {
this.hireDate = hireDate;

All required fields are reflected in XML elements within the sequence. Optional elements often include
numOccurs="0". The Java data types are mapped neatly into XML intrinsic data types, as shown in

the schema.

Listing 4-5. Data type of ‘employee’ within XSD

<xs:schema xmlns:tns="http://employees.rpc.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"™ version="1.0"
targetNamespace="http://employees.rpc.ws.bemach.com/">
<xs:element name="SOAPException" type="tns:SOAPException" />
<xs:complexType name="employee">
<xs:sequence>
<xs:element name="emplNo" type="xs:long" />
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="birthDate" type="xs:dateTime" />
<xs:element name="gender" type="xs:string" />
<xs:element name="hireDate" type="xs:dateTime" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="SOAPException">
<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:schema>

Download free eBooks at bookboon.com

72

http://bookboon.com/

4.2 Develop a Web Service

A bottom-up approach for developing a Web Service involves the following activities:

o Write a data access object.

o Write a business logic object.
o Write a service object.

« Deploy a service to a server.

o Publish the server for use.

In this application, no business services are included, thus the activities are simplified as follows:

Write Data |l Write Data [l Createa [
Access Class Service Class Server

Start

Listing 4-6. Activities for writing Web Services with Java

‘\\

EUROPEAN
BUSINESS
SCHOOL

FINANCIAL TIMES
2013

i ssanoEROan

il | mlll!!

T

-
. F
- —— Tk - - N
MASTER IN MANAGEMENT
Beecause achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,

Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

. & % ; : [: . .
p's ﬂ: e #oobevond
]

K

Choose your area of specialization.
Customize your master through the different options offered,
Global Immersion Weeks in locations stich as London, Silicon Valley or Shanghai.

Because you change, we change with you.

Download free eBooks at bookboon.com

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

We create two Java projects under Eclipse — data-svc and java-ws. The data-svc project holds Java code
that interacts with the database via JDBC. This project creates a library called ‘data-svc.jar. This library

contains four Java classes:

« DbConfig.java
« DbConnection.java
« Employee.java

« EmployeeDao.java

The java-ws project, which resulted in a java-ws.jar library, consists of the following Java classes:

SvrConfig.java

o Serverjava

« EmployeeDocData.java
« EmployeeRpcData.java

421 Class Diagram

A static view of the server application is depicted in the following class diagram.

Listing 4-7. A class diagram

(- . !
' java-ws jar <<;V:rr":zrr>> !

1
| |
1 1
1 1
1 1
| / l \— |
1 1
: <<JavaBean>> <<Web Service>> <<Web Service>> :
| SvrConfig EmployeeDocData EmployeeRpcData| !

1
| |
1 1
1 1

1

[

| data-svc,| |
: <<utility>> :
: EmployeeDao 1
| I
| 1
| 1
| 1
! 1
' 1
\ 1
| 1
I () !
: <<JavaBean>> <<JavaBean>> <<utility>> :
: DbConfig Employee DbConnection .
| I
: 1

Download free eBooks at bookboon.com

http://bookboon.com/

In a class diagram, the hollow-diamond adornment indicates a part-whole relationship between the
classes. This is called an ‘aggregation’. On the other hand, the solid-diamond adornment represents
a composite relationship between the classes. A composition is stronger than an aggregation in that
the former involves a complete management of the lifetime of the object. For example, at runtime,
an EmployeeDao object is responsible for allocation and deallocation of the DbConnection object.

The Employee object is allocated by the EmployeeDao but deallocated by the EmployeeDocData or
EmployeeRpcData object.

The dotted-line boxes indcate the boundaries of the two libraries to be created for this application.

422 Write Data Access Class

The Data Access Object (DAO) design pattern is used to provide abstract and encapsulated access of

data from the data sources. It manages the connection with the data source to store and retrieve data.

First, we create a Java project called ‘data-svc’ (see section 7.2.1). After we complete our coding of the

Java classes, this project should appear as follows:

i Java - Eclipse - B
File Edit Refactor Source Mavigate Search Project Run Window Help
L= L BORErE SERERCEE < B AU b Al N SRS A C i - M=l T g
v e | Quick Access :' & | ¥® Java EE (& Java & Web
f# Package Explorer 2 | gt JUnit i =0 BRSO
B % o sl
- Foatesd 2 -
4 [spc @ conn
4 H} com.bemach.data
141 DbConfig.java o
|4] DbConnection java
[31 Employee.java = =R
[EmployeeDaojava -
B JRE System Library [jdk160 29 An
4 & test outline is
4} com.bemach.data.junit not
[4] EmployeeDaoTestjava available.
=4 JUnit 4
=i Referenced Libraries
_ Brco. ='=0
= dist

4 & ib Xg| LplEE A B~I

B G e VRS TP A BT <terminated > Server (1) [Java Application] C:\Or:z

-~
< build.xmi

b b4
data-svc
Figure 4-6. Java Project: data-svc

4.2.2.1 Import JDBC driver to the project

Following the instructions in section 7.2 to install MySQL and download an appropriate JDBC driver for
MySQL database, the JDBC driver that is used for this application is mysql-connector-java-5.1.24-bin. jar.

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Create a folder named ‘lib’ under the data-svc project by first selecting the project. Then, choose File —
New — Folder. This folder will contain the JDBC driver library. Expand the project by clicking on the

triangle to the left of the project name.

Now, import the JDBC driver that you have downloaded by clicking on the lib folder. Then, choose

File — Import... The Select screen pops up as follows:

e Import - olEN
Select .
Import resources from an archive file into an existing project. l—?—_—ﬂ

Select an import source:

type filter text

| 4= eral ~
[Accive]

I=# basting Projects into Workspace
-, File System
L Preterences

= Android

@ C/C+

& VS

=EB

& Install

& Java EE

L1 G Blun-in Davslnnment

)] Back Next > Einish Cancel

Figure 4-7. Select import type

“I studied
English for 16 >
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

Download free eBooks at bookboon.com

76 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Introduction to Web Services with Java A Sample Web Service Application

Choose General — Archive File, and then click on the ‘Next’ button at the bottom of screen. An Archive
file screen pops up as follows:

{3 Import - O n
Archive file

Import the contents of an archive file in zip or tar format from the local file system. =4

Trom archive file:: 5.1.24\mysql conncctor java 5.1.24\mysql conncetor java 5.1.24 binjar wl

| Browse...
Ve /
Filter Types... Select All Deselect All
Into folder: data-svc/lib Browse...

[] Overwrite existing resources without warning

(? < Back Next > | Finish Cancel

Figure 4-8. Import Archive file screen

If you know the location of the JDBC driver for MySQL database, enter the file name and location.

Otherwise, use the ‘Browse’” button on the right and choose the file. Then, click the ‘Finish’ button on

the bottom of the screen.

4.2.2.2 Reference to the library

Next, make sure the project has a reference to the MySQL JDBC driver library. First, choose the data-

svc project. Then, select Project (menu) — Properties. The Properties for the data-svc screen will pop

up as follows:

=l Properties for data-svc - oIEN
type filter text Java Build Path D S
Resource s
gl (® Source | i Projects B Libraries | % Qrder and Export
uilders
Java Build Path 1ARs and class folders on the build path:
Java Code Style B, JRE System Library [jak160_29]
Java Compiler = JUnit4 == —
Java Editor Add External JARs.

lavadoc Location

Add Mariable.
Project Facets
Project References Add Library...
Refacluring History TR
Run/Debug Settings
Lask Repositary Add Fxternal Class Folder...
Task lags
Validation
WikiText

OK Cancel

Figure 4-9. Java Build Path

Download free eBooks at bookboon.com

77

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

On the left panel of the screen, choose Java Build Path. Select the Libraries tab from the top of the right
panel. Click on the Add JARs... button. A JAR Selection screen will pop up as follows:

e JAR Selection - B

Choose the archives to be added to the build path:

type filter text

- 2 odfws
- 12 of-ws-client
4 [data-svc
(= settings
& bin
4 = lib
= mysqgl-connector-java-5.1.24-bin.jar
- =51
- = test
¥ .classpath
¥ .project
buildxml
- 2 java-ws
> 2 java-ws-client
» 2 placeholder

=

Figure 4-10. JAR Selection screen

Expand data-svc/lib folder. Select the JDBC driver. Then, click OK. Your Java Build Path screen should
look like this:

})
& Properties for data-svc - olEN
type fiter text Java Build Path - .-
Rascurce B Sour Proj ®\ Libraries |, Order and E
il @ Source | i Projects B Order and Export
Java Build Path] JARs and class folders on the build path:
1ava Code Style & mysql-connector-java-5.1 24-bin jar - data-suc/lio Add JARS..
Java Compiler = JRE System Library [jdk160 291
Java Editor = JUnit4 A el inds
Javadac Location ‘Add Variabie.
Project Facets)
Project References Add Library...
Refactoring History Add Class Folder..
Run/Debug Semings
Jask Rapository Add Extemal Class Foiger..
Task Tags
Validation
WikiText

@ oK Cancel

Figure 4-11. Java Build Path

Now, the coding can begin. In the following section, we create two classes - DbConnection.java and

EmployeeDao.java.

Download free eBooks at bookboon.com

78

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

4.2.2.3 DbConnection.java

In earlier sections, we created the DbConfig.java class to hold the configuration parameters for accessing
the database. The next logical step is to create a class to manage all the JDBC connections for this
application. Getting a database connection can also be accomplished using DataSource class; however,

in this book, we use a basic method for obtaining a JDBC database connection.

Listing 4-8. DbConnection.java class

package com.bemach.data;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*/

import java.sqgl.Connection;
import java.sqgl.DriverManager;
import java.sqgl.SQLException;
import java.util.logging.Level;
import java.util.logging.Logger;

Excellent Economics and Business programmes at:

7T\
Ry '
university of e AACSB
groningen b ACCREDITED

| ; -
“The perfect start
of a successful,
international career’

b

% CLICK HERE
'.? F to discover why both socially
and academically the University

of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

Download free eBooks at bookboon.com

79 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Introduction to Web Services with Java A Sample Web Service Application

public final class DbConnection {
private static final Logger LOG = Logger.getLogger (DbConnection.class.getName ());
private static final String ERROR MSG = "ERROR: ";
private Connection conn = null;

public Connection getConn () {
return conn;

private DbConnection (String driverName, String subprot, String host,
String port, String db, String uid, String psw) {
LOG.info ("Getting DB connection ...");

try {
Class.forName (driverName) ;
String url = String.format("jdbc:%s://%s:%s/%$s?user=%s&password=%s",
subprot, host, port, db, uid, psw);
conn = DriverManager.getConnection(url) ;
} catch (SQLException e) {
LOG.log (Level.SEVERE, ERROR MSG+e) ;
} catch (ClassNotFoundException e) {
LOG.log (Level.SEVERE, ERROR MSG+e) ;

public static DbConnection getInstance(String driverName, String subprot,
String host,
String port, String db, String uid, String psw) {
return new DbConnection (driverName, subprot, host, port, db, uid, psw);

public void close () {
try {
if (conn != null) {

conn.close () ;
conn = null;
}
} catch (SQLException e) {
LOG.log (Level.SEVERE, ERROR MSG+e) ;

The DriverManager class helps create a JDBC connection in three ways.

getConnection (String url)
getConnection (String url, Properties info)

getConnection (String url, String user, String password)

Download free eBooks at bookboon.com

80

http://bookboon.com/

In this example, the first method is used and the URL can be seen as follows:

jdbc:mysgl://localhost:3306/employees?user=empl l&password=pas

sword

The getConn() method requires all necessary database configuration parameters to connect to the
database. When a JDBC connection is no longer needed, it must be explicitly closed by calling the
closeConn() method. Accumulated open connections will strain the resources. In most JDBC drivers,
closing a connection results in closing the Statement and Result sets that are associated with the

connection.

4.2.2.4 EmployeeDao.java

This class provides basic access to the employees? table in the database. PreparedStatement is used to

avoid potential SQL injection attack.

Our task is to develop a WS called EmployeeDataService that allows a client to create, read, update and
delete a row from the employees table. For now, we are not concerned with security — we simply want

to show how this can be done thorugh a bottom-up approach to create a Web Service.

First, we create a class that allows access to this table. This class is called EmployeeDao and allows
four basic operations on a row of the employees table. An Employee class represents each employee
from the Java coding. EmployeeDao uses basic Java Database Connectivity (JDBC) to create a database

connection, issues an SQL statement, and processes the return. It is a basic JDBC application.

Listing 4-9. EmployeeDao.java class

package com.bemach.data;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*

~

import java.sqgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sqgl.SQLException;
import java.sqgl.Timestamp;

import java.util.Calendar;

import java.util.logging.Logger;

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

*

This class allows its application to perform the four (4) basic operations
of an Employee resource:

Create

Read

Update

Delete

Sw N

L S R S S

*

CRUD is classic in a sense that it is most like what an application does to
an authorized resource.

Additional methods are:
getEmployeeByLastName

L e

getEmplByFirstLastName

*

*/
public class EmployeeDao {
public static final Logger LOG = Logger.getLogger (EmployeeDao.class.getName ()) ;
private DbConfig cfg = null;

public EmployeeDao () {

/**
* Constructor
* @param cfg
*/
public EmployeeDao (DbConfig cfg) {
this.cfg = cfg;
LOG.info ("Constructing EmployeeDao ...");

/**
* From a ResultSet returns an Employee record.
*
* @param rs
* @return
*/
protected Employee getEmpl (ResultSet rs) throws SQLException ({
Employee empl = new Employee();
Calendar cal = Calendar.getInstance();
empl.setEmplNo (rs.getInt ("emp no"));
cal.setTimeInMillis (rs.getTimestamp ("birth date") .getTime());
empl.setBirthDate (cal) ;
empl.setFirstName (rs.getString ("first name"));

empl.setLastName (rs.getString("last name"));

empl.setGender (rs.getString ("gender")) ;

cal = Calendar.getInstance();

cal.setTimeInMillis (rs.getTimestamp ("hire date") .getTime());

empl.setHireDate (cal) ;
return empl;

Download free eBooks at bookboon.com

82

http://bookboon.com/

Introduction to Web Services with Java

A Sample Web Service Application

/**
* Create a new employee.
*
* @param empl
* @return
*/
public int createEmpl (Employee empl)
LOG.info ("Create an employee");
DbConnection dbConn =
cfg.getSubprot (),
cfg.getPort (), cfg.getDb(),

cfg.getUid(), cfg.getPsw());
String sgl = "SELECT MAX (EMP_NO)
PreparedStatement stmt = null;
ResultSet rs = null;
try {
stmt =

stmt.execute () ;

rs = stmt.getResultSet();
rs.next ();

int nextEmplNo =
stmt.close () ;
rs.close();

rs.getInt (1) ;

DbConnection.getInstance (cfg.getDriverName (),
cfg.getHost (),

FROM EMPLOYEES";

dbConn.getConn () .prepareStatement (sql) ;

throws SQLException {

FIRST NAME, LAST

sql = "INSERT INTO EMPLOYEES (EMP_NO, BIRTH DATE,
NAME, GENDER, HIRE DATE) " +
"VALUES (?,7?,2,2,2,2)";
stmt = dbConn.getConn () .prepareStatement (sql) ;
int idx = 1;

stmt.setInt (idx++,
Timestamp ts =

++nextEmplNo) ;

new Timestamp (empl.getBirthDate () .getTimeInMillis());

stmt.setTimestamp (idx++,

ts);

stmt.
stmt.
stmt.
ts =
stmt.
stmt.execute () ;

return nextEmplNo;

setString (idx++,
setString (idx++,
setString (idx++,

} finally {

if (stmt != null) {
stmt.close();

}
if (rs != null) {
rs.close();

}

dbConn.close () ;

new Timestamp (empl.getHireDate () .getTimeInMillis());
setTimestamp (idx++,

empl.getFirstName()) ;
empl.getLastName ()) ;
empl.getGender());

ts);

Download free eBooks at bookboon.com

83

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

/**
* Update an employee record.
*
* @param empl
* @return
*/
public boolean updateEmpl (Employee empl) throws SQLException {

LOG.info ("Update an employee");

DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName (),
cfg.getSubprot (), cfg.getHost(),
cfg.getPort (), cfg.getDb (),
cfg.getUid (), cfg.getPsw());

String sql = "UPDATE EMPLOYEES SET BIRTH DATE=?, FIRST NAME=?, LAST NAME=?,
GENDER=?, HIRE DATE=? " +
"WHERE EMP_NO=?";
PreparedStatement stmt = null;

try {
stmt = dbConn.getConn () .prepareStatement (sql) ;
int idx = 1;
Timestamp ts = new Timestamp (empl.getBirthDate () .getTimeInMillis());
stmt.setTimestamp (idx++, ts);
stmt.setString (idx++, empl.getFirstName());
stmt.setString (idx++, empl.getLastName ()) ;
stmt.setString (idx++, empl.getGender());
ts = new Timestamp (empl.getHireDate () .getTimeInMillis());
stmt.setTimestamp (idx++, ts);
stmt.setInt (idx++, (int)empl.getEmplNo());

stmt.execute () ;
return true;
} finally {
if (stmt != null) {
stmt.close();
}

dbConn.close() ;

/**
* Delete an employee by Employee Number
* @param emplNo
* @return
*/
public boolean deleteEmpl (int emplNo) throws SQLException {

LOG.info ("Delete an employee");

DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName (),
cfg.getSubprot (), cfg.getHost(),
cfg.getPort (), cfg.getDb(),
cfg.getUid (), cfg.getPsw());

String sql = "DELETE FROM EMPLOYEES WHERE EMP NO=2";
PreparedStatement stmt = null;

try {
stmt = dbConn.getConn () .prepareStatement (sql) ;
stmt.setInt (1, emplNo);
stmt.execute () ;
return true;
} finally {

if (stmt !'= null) {
stmt.close() ;

}

dbConn.close() ;

Download free eBooks at bookboon.com

84

http://bookboon.com/

/‘k‘k
* Get an employee of a given unique employee number ..
*

* emplNo
*
*/
public Employee getEmpl (int emplNo) throws SQLException {
LOG.info ("Getting employee by Employee number: "+emplNo) ;
DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName (),
cfg.getSubprot (), cfg.getHost(),
cfg.getPort (), cfg.getDb(),
cfg.getUid (), cfg.getPsw());

String sgl = "SELECT * FROM EMPLOYEES WHERE EMP_ NO=2";
PreparedStatement stmt = null;
ResultSet rs = null;

try {
stmt = dbConn.getConn () .prepareStatement (sqgl) ;
stmt.setInt (1, emplNo);
if (stmt.execute()) {
rs = stmt.getResultSet();
if (rs !'= null && rs.next()) {
return getEmpl (rs);
}
}
} finally {

if (stmt != null) {
stmt.close () ;

}

if (rs != null) {
rs.close();

}

dbConn.close() ;

}

return null;

This class has four important methods that can create, read, update and delete an employee record from
the employees table in the database. These methods will be reflected later through the four operations
of the two Web Services called ‘EmployeeDocData” and ‘EmployeeRpcData’

4.2.2.4.1 createEmpl(Employee empl)

This method receives a new employee record called ‘empl” and inserts it into the employees table using
a JDBC PreparedStatement class. This method assumes that the callers of this method have already
validated the content of the employee record. Another approach is to include a validation method in
this class and call from each of the four operations. Notice that all operations dealing with the database

are done through a PreparedStatement in order to limit SQL inject attacks from the outside.

First, we get the largest employee number in order to create a new employee record with a unique primary
key. This way of getting an employee number may encounter a concurrency problem when another
application or process inserts another record at the same time; however, we ignore this condition here

for the sake of simplicity.

Download free eBooks at bookboon.com

http://bookboon.com/

Once a new employee number has been received, the method inserts the record into the database and
a new employee number is returned to the caller; however, the final clause will first make sure that the
database connection has been closed. This is one of the many techniques to ensure that resources are

properly deallocated after the method completes its task.

4.2.2.4.2 getEmpl(emplNo)

This method retrieves an employee record from the employees table of the database. A unique employee
number is a required input. If the record is found, it is returned to the caller. Otherwise, an exception

is thrown. Regardless, at this point, the database connection is closed.

4.2.2.4.3 updateEmpl(empl)

This method updates a record with all values from the input record except the employee number. A
Boolean value of true or false is returned after the processing is completed. If the record exists and the

update completes successfully, a Boolean value of truth is returned. Otherwise, the method returns false.

4.2.2.4.4 deleteEmpl(emplNo)

Similarly to other methods of this class, this method opens a database connection then issues an SQL
statement to complete the task. After a successful completion, an employee record will be removed from

the table and a Boolean value of truth is returned. Otherwise, the method returns a value of false.

Overall, this class is relatively simple. It performs the most frequent operations on a resource stored in
the database. This class is kept simple because our focus is on the creation of Web Services not database
operations. When more complex business rules and multi-datasource data access activities are involved,
the fundamental concept of Web Services remains the same. The main focus of Web Service is the

interface - it must be robust and capable of evolving over time.

In the next section, we briefly discuss how to test the data access object so that we can ensure some basic

quality assurance of the development team.

4.2.2.5 JUnit Test for Data Access Object

We provided a basic JUnit test for the EmployeeDao.java class. This class is called ‘EmployeeDataTest.java’

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-10. EmployeeDaoTest.java Class

package com.bemach.data.junit;

/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*/
import static org.junit.Assert.*;

import java.sgl.SQLException;
import java.sgl.Timestamp;
import java.util.Calendar;

import java.util.logging.Logger;

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

import com.bemach.data.DbConfig;
import com.bemach.data.Employee;
import com.bemach.data.EmployeeDao;

public class EmployeeDaoTest {
public static final Logger logger = Logger.getLogger (EmployeeDaoTest.class.
getName ()) ;

/**
* @throws java.lang.Exception
*/
@BeforeClass
public static void setUpBeforeClass () throws Exception {
}

/**
* @throws java.lang.Exception
*/
@AfterClass
public static void tearDownAfterClass () throws Exception {
}

private EmployeeDao dao;

Download free eBooks at bookboon.com

87

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

/**
* @throws java.lang.Exception
*/
@Before
public void setUp () throws Exception ({
logger.info ("Testing employee dao class ...");
DbConfig cfg = new DbConfig () ;
cfg.setDriverName ("com.mysqgl.jdbc.Driver") ;
cfg.setHost ("saintmonica") ;
cfg.setPort ("3306");
cfg.setDb ("employees") ;
cfg.setUid("empl 1");
cfg.setPsw("password") ;
dao = new EmployeeDao (cfqg);
}
/‘k*
* @throws java.lang.Exception
*/
@After

public void tearDown () throws Exception {

}

/**
* Test method for {@link com.bemach.data.EmployeeDao#getEmpl (int) }.
* @throws SQLException
*/
@Test
public void testGetEmplByEmplNo () throws SQLException {
Employee empl = dao.getEmpl (10327);
assertTrue ("*** ERROR NULL ***" empl != null);
logger.info ("found "+empl.getFirstName ()+"/"+empl.getLastName ()) ;

@Test

public void testCRUDEmpl () throws SQLException {
logger.info (">>> get empl");
Employee empl = dao.getEmpl (10001) ;
empl.setFirstName ("Test First");
empl.setLastName ("Test Last");
Timestamp ts = Timestamp.valueOf("1970-01-01 0:0:0.0");
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis (ts.getTime());
empl.setBirthDate (cal) ;
ts = Timestamp.valueOf("1970-01-01 0:0:0.0");
cal.setTimeInMillis(ts.getTime());
empl.setHireDate (cal) ;
empl.setGender ("F") ;

logger.info (">>> create empl");

int newEmplNo = dao.createEmpl (empl) ;
logger.info (">>> get new empl");

Employee newEmpl = dao.getEmpl (newEmplNo) ;

Download free eBooks at bookboon.com

88

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

newEmpl.setGender ("M") ;

logger.info (">>> update new empl");
dao.updateEmpl (newEmpl) ;

logger.info (">>> get new empl again");
newEmpl = dao.getEmpl (newEmplNo) ;
printOutput (newEmpl) ;

logger.info (">>> delete new empl");
dao.deleteEmpl (newEmplNo) ;

private void printOutput (Employee empl) {
StringBuffer sb = new StringBuffer():;
sb.append (", emplno=").append(empl.getEmplNo()) ;
sb.append (", fname=") .append(empl.getFirstName());
sb.append (", lname=") .append(empl.getLastName ())
sb.append (", hire=") .append(empl.getHireDate());
sb.append (", birth=").append(empl.getBirthDate())
sb.append (", gender=").append(empl.getGender()):;
logger.info(sb.toString());

’

After each operation, an employee record is formatted and displayed on the screen.

If all the tests are run successfully, the result should be displayed in green on the JUnit panel on the

left-hand side of the Eclipse IDE:

Listing 4-11. JUnit test result

O Java - Eclipse - cEN

| File Edit Refactor Mavigate Search Project Run Window Help [

- B0 Tt ag ey O G [G N T A e e e e

| % Java EE ;r&)].;xva @ Web !

| Package Fxplorer ofu.lUnit &3 % G |2 R e L= -
Finished after 1306 seconds 7w

Runs: 474 afrars: 0 o failures: 01 .

=== = == _—=-—= = —:] il

|6l com. bemach datajunit! mployeellanlest [Runner IUnit 4] (1.290 s)

@ cor
Con
and
alo

§ =B

An
outiine
is not
availabl

= Failure Trace

Android SDK Content Loader

Download free eBooks at bookboon.com

89

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

423 Package a Java Library

In order to run a build from a command line, JAVA_ HOME and ANT_HOME variables need to
be defined. Make sure to include $JAVA_HOME/bin or %JAVA_HOME%\bin in the PATH variable.
JAVA_HOME should be pointed to the installed JDK. We've developed and tested with JDK 1.6. The

Ant build script was of version 1.7.1.

This build.xml build script by default runs from the root of the project data-svc directory. The classes
are stored in the bin directory, while the Java library data-svc.jar will be stored in the dist directory. A

clean build command will remove both directories. Thus, two build commands should be used:

Ant dist (or simply ant)

Ant clean

is currently enrolling in the
Interactive Online
programs:

enroll by October 31st, 2014 and
save up to 11% on the tuition!
pay in 10 installments / 2 years
Interactive Online education

vVvyvVYyyvyy

visit to
find out morel!

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

Download free eBooks at bookboon.com

20 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-12. build.xml for data-svc Java Project

<project name="data-svc" default="dist" basedir=".">
<description>
Data Services
</description>

<!- set global properties for this build ->
<property environment="env" />
<path id="classpath.base">

<fileset dir="./1ib" includes="**/*_ jar" />
</path>

<path id="classpath.compile">
<path refid="classpath.base" />
</path>

<target name="init">
<mkdir dir="./bin" />
<mkdir dir="./dist" />
</target>

<target name="compile" depends="init" description="compile the source ,>

<javac srcdir="./src" destdir="./bin" debug="true">
<classpath refid="classpath.compile" />
</javac>
</target>

<target name="dist" depends="compile" description="generate the distribution">
<!- Create the distribution directory —->
<jar jarfile="./dist/data-svc.jar" basedir="./bin" />

</target>

<target name="clean" description="clean up">
<!- Delete the ${build} directory trees ->
<delete dir="./dist" />
<delete dir="./bin" />

</target>

</project>

The output, a data-svc.jar file, is stored in the dist directory. The content of this JAR file should be as

follows:

META-INF/
META-INF/MANIFEST .MF
com/

com/bemach/

com/bemach/data/

Download free eBooks at bookboon.com

21

http://bookboon.com/

com/bemach/data/DbConfig.class
com/bemach/data/DbConnection.class
com/bemach/data/Employee.class

com/bemach/data/EmployeeDaoc.class

From the standpoint of business, EmployeeDao should be tested to ensure that it works at the level of

the basic unit. All operations of the classes were thoroughly tested to ensure that the classes work.

424 Develop Java Classes for Web Services

To create a Java project under Eclipse IDE, please refer to Chapter 7. Import two libraries (i.e., data-svc.
jar and MySQL JDBC driver) into the lib folder under java-ws project. Also, make sure to have these
libraries in the Java Build Path. Refer to the previous section for instructions on how to make reference

to the libraries for a Java project in Eclipse.

We develop a Web Service for employee with two different styles: document and RPC. First, we create a
Java project called ‘java-ws. After we finish coding the required Java classes, the java-ws project should

appear as follows:

1O Java - Eclipse - B n
FEle Edit Refactor Source Navigate Search Project Run Window Help
- RS G eh R A B A0 N SRS Cl . Rr=Rl i
Tt Al Quick Access & | 82 Java EE |&¥ Java | & Web
1 Package Explorer 52 | gif JUnit = =g gl = g
=M= = - -
il java-ws| ~ -
“ B ® conn
- B3 cpm.bemach.ws.duc‘emp\oyees Gaific
L& EmployzeDocDalajava E
4 £ combemachws.hello SelPs:
L& HelloWorld java
= i |
4 H com.bemach.ws.rpc.employees
B EmployeeRpcDatajava N
a B combemathwsserver An %
- outiine is
: not
1] SvrConfigjava available.
=i JUnit 4
=4 Referenced Libraries
= JRE System Library [jdk160_29 Bco % = 0
= dist ® %| RS e B~y
4 Zlib

<terminated> Scrver (1) [Java Application] C\Orz
2| data-svcjar

2! mysgl-connector-java-5.1.24-binjar
<l >

java-ws

Figure 4-12. java-ws Java Project

The following sections describe the steps required to create Web Services in two main Java classes —

EmployeeDocData.java and EmployeeRpcData.java

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

4.2.4.1 EmployeeDocData.java

Writing Web Service in Java can be done by incorporating Java annotation into Java classes. These classes

provide WS using SOAP. Java WS annotations that are used include the following:

* @WebService: indicates this class to implement a Web Service
* @SOAPBinding: specifies Web Service to bind to a SOAP protocol
* @WebMethod: exposes an operation as a Web method.

* @WebParam: mapps individual parameters to a WS message.

A document-style SOAP binding is used for this application.

sssssssssssssvsssssassssssssssssssssssssssassssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

One generation’s transformation is the next's status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com &\S«\

3 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-13. EmployeeDocData.java Class

package com.bemach.ws.doc.employees;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.util.logging.Logger;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;
import javax.xml.soap.SOAPException;

SOAP Stvle

import com.bemach.data.DbConfig;
import com.bemach.data.Employee;
import com.bemach.data.EmployeeDao;

@WebService
@SOAPBinding (style=SOAPBinding.Style.DOCUMENT)
public class EmployeeDocData {
private static final Logger LOG =
Logger.getLogger (EmployeeDocData.class.getName ()) ;
private EmployeeDao dao = null;

public EmployeeDocData (DbConfig cfg) {
dao new EmployeeDao (cfg);

}

@WebMethod
public Employee getEmployee (€WebParam(name="emplNo")long emplNo) throws
SOAPException, Exception {
LOG.info ("Doc.readEmployee") ;
Employee employee = dao.getEmpl ((int)emplNo) ;
if (employee == null) {
throw new SOAPException ("No such employee!");
}
return employee;

}

@WebMethod
public long createEmployee (@WebParam (name="employee")Employee employee) throws
Exception {
LOG.info ("Doc.createEmployee") ;
return dao.createEmpl (employee) ;

}

@WebMethod
public boolean updateEmployee (€WebParam (name="employee")Employee employee)
throws Exception {
LOG.info ("Doc.updateEmployee.") ;
return dao.updateEmpl (employee) ;
}

@WebMethod
public boolean deleteEmployee (€WebParam (name="emplNo")long emplNo) throws
Exception {
LOG.info ("Doc.deleteEmployee.") ;
return dao.deleteEmpl ((int)emplNo) ;

Download free eBooks at bookboon.com

24

http://bookboon.com/

This class has four major operations (i.e., CRUD) on an employee record. Note that for each operation,
the service creates an EmployeeDao object to call the matching operation. The call is then returned as
the return of the operation of the service. Note that the marshalling of the return object is accomplished

with the assistance of the JAXB component in Java.

These four operations are simple. Each method calls the corresponding method provided by EmployeeDao

instance.

4.2.4.1.1 @WebService Annotation

@WebService annotation indicates that this class (or an interface) impelements a Web Service. This

annotation has six (6) optional elements that can be used for a more detailed definition of a Web Service:

1.endpointInterface: the complete name of the service endpoint interface

2. name: the name of the <portType> element within the WSDL

3. portName: the name of the <port> element within the WSDL

4. serviceName: the name of the <service> element within the WSDL

5. targetNamespace: the targetNamespace attribute of the <definition> element of

the WSDL

6. wsdlLocation: the content of the location attribute of the <soap:address> element

In this application, we did not include these optional elements. We will define the location of the WSDL

when we create an Endpoint within the server code (Server.java).

4.2.4.1.2 @SOAPBinding Annotation

This annotation specifies how to map a Web Service onto the SOAP message protocol. These involve

three optional elements:
1. parameterStyle: This can be either BARE or WRAPPED.
2. style: This can be either DOCUMENT or RPC

3. use: This can be either LITERAL or ENCODED.

In this sample application, we use DOCUMENT and RPC styles for two separate Web Services.

Download free eBooks at bookboon.com

http://bookboon.com/

4.2.4.1.3 @WebMethod Annotation

This annotation customizes a method that is exposed as a WS operation. There are three (3) optional

elements that can be used with this annotation:

1. action: name of an operation defined within the WSDL
2. exclude: excludes the method from being exposed as an operation of a Web Service

3. operationName: name of the operation.

4.2.4.1.4 @WebParam Annotation

Individual parameters of an operation can be named in the same way as the method. Use this annotation

to change to different names within the WSDL. Optional parameters are:

1. header: if true, the parameter is extracted from the message header instead of from the
message body.

2. mode: there are three basic modes — IN, OUT, and INOUT.

3. name: the parameter is mapped to name in XML element that represents the parameter. If
DOCUMENT style is used, name is required.

4. partName: if RPC style is used, this is the name in the wsdl:part element.

5. targetNamespace: if DOCUMENT style is used, the parameter maps to a header.

4.2.4.2 EmployeeRpcData.java

This class implements the SOAP RPC style of Web Service. It is nearly identical to that of the document
style with the exception of SOAPBinding annotation. This class is used to show the difference between

the two styles in use today.

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-14. EmployeeRpcData.java Class

package com.bemach.ws.rpc.employees;
/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.util.logging.Logger;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;
import javax.xml.soap.SOAPException;

import com.bemach.data.DbConfig;
import com.bemach.data.Employee;
import com.bemach.data.EmployeeDao; SOAP Style

@WebService
@SOAPBinding (style=SOAPBinding.Style.RPC)
public class EmployeeRpcData {
private static final Logger LOG = Logger.getLogger (EmployeeRpcData.class.
getName ()) ;
private EmployeeDao dao = null;

public EmployeeRpcData (DbConfig cfg) {
dao = new EmployeeDao (cfqg);

@WebMethod
public Employee getEmployee (€WebParam(name="emplNo")long emplNo) throws
SOAPException, Exception {
LOG.info ("Rpc.readEmployee") ;
Employee employee = getDao () .getEmpl ((int)emplNo) ;
if (employee == null) {
throw new SOAPException ("No such employee!");
}

return employee;

@WebMethod
public long createEmployee (€WebParam (name="employee")Employee employee)
throws Exception {
LOG.info ("Rpc.createEmployee") ;
return getDao () .createEmpl (employee) ;

Download free eBooks at bookboon.com

97

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

@WebMethod
public boolean updateEmployee (@WebParam (name="employee")Employee employee)
throws Exception ({
LOG.info ("Rpc.updateEmployee.") ;
return getDao () .updateEmpl (employee) ;
}

@WebMethod
public boolean deleteEmployee (@WebParam(name="emplNo")long emplNo) throws
Exception {
LOG.info ("Rpc.deleteEmployee.");
return getDao () .deleteEmpl ((int)emplNo) ;
}

public EmployeeDao getDao () {
return dao;

}

public void setDao (EmployeeDao dao) {
this.dao = dao;
}

4.2.5 Hosting Web Services

Web Services need to be hosted by a server that provides some basic HT'TP service endpoints. Note that
this type of server is rather simplistic in its implementation for the purpose of WS demonstration. A more
industrial-strength application server, such as WebLogic, JBOSS, or WebSphere, is more appropriate for

medium-sized to large business settings.

4.2.5.1 Server.java

This class implements a HTTP server to host multiple Web Services (e.g., HelloWorld,
EmployeeDocDataService and EmployeeRpcDataService). Each WS is uniquely identified with a

service endpoint.

« HelloWorld Web Service: http://localhost:9999/java-ws/hello?WSDL
« Employee Document Web Service: http://localhost:9999/doc/employees?wsdl
« Employee RPC Web Service: http://localhost:9999/rpc/employees?wsdl

Download free eBooks at bookboon.com

28

http://localhost:9999/java-ws/hello?WSDL
http://localhost:9999/doc/employees?wsdl
http://localhost:9999/rpc/employees?wsdl
http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-15. Server.java Class

package com.bemach.ws.server;

* 2013 (C) BEM, Inc., Fairfax, Virginia

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “WAS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

import java.util.logging.Logger;

import javax.xml.ws.Endpoint;
import javax.xml.ws.EndpointReference;

import com.bemach.data.DbConfig;

import com.bemach.ws.doc.employees.EmployeeDocData;
import com.bemach.ws.hello.HelloWorld;

import com.bemach.ws.rpc.employees.EmployeeRpcData;

/**
*
*/
public final class Server ({
private static final Logger LOG = Logger.getLogger (Server.class.getName());
private static final String MYSQL DRIVER="com.mysql.jdbc.Driver";

private static final String DB HOST = "saintmonica";
private static final String DB PORT = "3306";
private static final String DB SID = "employees";
private static final String DB USER = "empl 1";
private static final String DB PSW = "password";
private Server () {

protected static DbConfig getDbConfig() {
DbConfig dbCfg = new DbConfig () ;
dbCfg.setDriverName (MYSQL DRIVER) ;
dbCfg.setHost (DB _HOST) ;
dbCfg.setPort (DB PORT) ;
dbCfg.setDb (DB _SID) ;
dbCfg.setUid (DB _USER) ;
dbCfg.setPsw (DB _PSW) ;
return dbCfg;

Download free eBooks at bookboon.com

29

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

private static final String HOST NAME = "localhost";

private static final String PORT NO = "9999";

private static final String HELLO SVC NAME = "java-ws/hello";
private static final String RPC EMPL SVC NAME = "rpc/employees";
private static final String DOC EMPL SVC NAME = "doc/employees";
private static final String PROTOCOL = "http";

protected static SvrConfig getSvrConfig() {
SvrConfig svrCfg = new SvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenInterface (HELLO SVC NAME) ;
svrCfg.setListenProtocol (PROTOCOL) ;
return svrCfg;

protected static Endpoint publish (SvrConfig cfg, Object svc) {
String url = String.format("%s://%s:%s/%s",
cfg.getlListenProtocol (),
cfg.getlListenHostname (),
cfg.getlistenPort (),
cfg.getlistenInterface());
Endpoint ep = Endpoint.publish(url, svc);
EndpointReference epr = ep.getEndpointReference();
LOG.info ("\nEndpoint Ref:\n"+epr.toString()):;
return ep;

protected static void startHelloWorld() {
SvrConfig cfg = getSvrConfig() ;
cfg.setListenHostname (HOST NAME) ;
cfg.setListenInterface (HELLO SVC NAME) ;
cfg.setListenPort (PORT NO);
cfg.setlListenProtocol (PROTOCOL) ;

HelloWorld hello = new HelloWorld();
publish(cfg, hello);
LOG.info ("HelloWorld service started successfully ...");

protected static void startRpcEmployees () {
SvrConfig svrCfg = getSvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenInterface (RPC _EMPL SVC NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenProtocol (PROTOCOL) ;
DbConfig dbCfg = getDbConfig() ;
svrCfg.setDbCfg (dbCfqg) ;

EmployeeRpcData rpcEmpl = new EmployeeRpcData (dbCfgqg) ;
publish(svrCfg, rpcEmpl);
LOG.info ("Employees (RPC) service started successfully

¥

Download free eBooks at bookboon.com

100

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

protected static void startDocEmployees () {
SvrConfig svrCfg = getSvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenInterface (DOC EMPL SVC NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenProtocol (PROTOCOL) ;
DbConfig dbCfg = getDbConfig() ;
svrCfg.setDbCfg (dbCfqg) ;

EmployeeDocData docEmpl = new EmployeeDocData (dbCfgqg) ;
publish(svrCfg, docEmpl);

LOG.info ("Employees (Document) service started successfully ...");

/**

* Start WS Server with multiple service endpoints...

*

* @param args

*/

public static void main(String[] args) {

startHelloWorld() ;
startRpcEmployees() ;
startDocEmployees() ;

4.2.5.2 Package the Web Services

This Ant build script builds the java-ws.jar library and stores it in the dist directory. This build requires

two Java libraries: data-svc.jar and mysql-connector-java-5.1.24-bin. jar.

Download free eBooks at bookboon.com

101

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-16. build.xml for java-ws Java Project

<project name="java-ws" default="dist" basedir=".">
<description>
Web Service usign Java.
</description>

<!- set global properties for this build ->
<property environment="env" />
<path id="classpath.base">

<fileset dir="./1ib" includes="**/*_ jar" />
</path>

<path id="classpath.compile">
<path refid="classpath.base" />
</path>

<target name="init">
<mkdir dir="./bin" />
<mkdir dir="./dist" />
</target>

<target name="compile" depends="init" description="compile the source ,>

<javac srcdir="./src" destdir="./bin" debug="true">
<classpath refid="classpath.compile" />
</javac>
</target>

<target name="dist" depends="compile" description="generate the distribution">
<!- Create the distribution directory —->
<Jar jarfile="./dist/java-ws.jar" basedir="./bin" />

</target>

<target name="clean" description="clean up">
<!- Delete the ${build} directory trees ->
<delete dir="./dist" />
<delete dir="./bin" />

</target>

</project>

The output of this build is a JAR file stored in the dist directory. The contents of this library consist of

the following elements:

META-INF/
META-INF/MANIFEST .MF
com/

com/bemach/

com/bemach/ws/

Download free eBooks at bookboon.com

102

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

com/bemach/ws/doc/

com/bemach/ws/doc/employees/

com/bemach/ws/hello/

com/bemach/ws/rpc/

com/bemach/ws/rpc/employees/
com/bemach/ws/server/
com/bemach/ws/doc/employees/EmployeeDocData.class
com/bemach/ws/hello/HelloWorld.class
com/bemach/ws/rpc/employees/EmployeeRpcData.class
com/bemach/ws/server/Server.class

com/bemach/ws/server/SvrConfig.class

43 Deploy Web Services

The server instance runs indefinitely. Use control-C to terminate the process. An alternative way to get
the configuration parameters is to load them from a Java properties file. Note that, for Windows, the

CLASSPATH separator is semi-colon (;) as opposed to colon (:) on UNIX.

/

Leadiny
% Maastricht University o Leanin:

Join the best at

- 33" place Financial Times worldwide ranking: MSc

the MaastriCht U niverSity International Business

+ 1% place: MSc International Business

School of Business and 15t place: MSc Financial Economics

2" place: MSc Management of Learning

o - 2" place: MSc Economics
I 2P
Econom 1CS. - 2" place: MSc Econometrics and Operations Research
- 2" place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com &\S«\

103 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

java -cp ./dist/java-ws.jar;../data-svc/dist/data-svc.jar; ./lib/mysqgl-

connector-java-5.1.24-bin.jar com.bemach.ws.server.Server
mysgl-connector-java-5.1.24-bin.jar isaJDBC driver for MySQL database.

Next, we use SOAP to test the Web Services.

4.4 Check WSDL and XSD

We produce three services with three distinct service endpoints. After the server is running, we verify
that these service endpoints are active and ready for service invocations. From a browser, we go to the

URLSs. The service endpoint for the HelloWorld example, http://localhost:9999/java-ws/hello?WSDL, was

examined in earlier chapters. We visit the two employees service endpoints:

4.4.5.1 Document style

WSDL and XSD of the employees Web Service are shown in the following listings. A client application

developer uses these WSDL documents to generate a Web Service stub for use inside their application.

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello?WSDL
http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-17. WSDL of a DOCUMENT Style

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://employees.doc.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://employees.doc.ws.bemach.com/"
name="EmployeeDocDataService">
<types>
<xsd:schema>
<xsd:import namespace="http://employees.doc.ws.bemach.com/"
schemaLocation="http://localhost:9999/doc/employees?xsd=1" />
</xsd:schema>
<xsd:schema>
<xsd:import namespace="http://bemach.com"
schemaLocation="http://localhost:9999/doc/employees?xsd=2" />
</xsd:schema>
</types>

P o el e e o e e e e e e e e S e e e e e e e e e e e e e e e

| <message name='"getEmployee'"> !
1 <part name="parameters" element="tns:getEmployee" />
l</message>

| <message name='getEmployeeResponse'>

1 <part name='"parameters'" element='"tns:getEmployeeResponse" />
</message>

1
e e e e e e e o e = = - e - - -

<part name="fault" element="tns:SOAPException" />
</message>
<message name="createEmployee">
<part name="parameters" element="tns:createEmployee" />
</message>
<message name="createEmployeeResponse">
<part name="parameters" element="tns:createEmployeeResponse" />
</message>
<message name="updateEmployee">
<part name="parameters" element="tns:updateEmployee" />
</message>
<message name="updateEmployeeResponse">
<part name="parameters" element="tns:updateEmployeeResponse" />
</message>
<message name="deleteEmployee">
<part name="parameters" element="tns:deleteEmployee" />
</message>
<message name="deleteEmployeeResponse">
<part name="parameters" element="tns:deleteEmployeeResponse" />
</message>
<portType name="EmployeeDocData">
<operation name="getEmployee">
<input message="tns:getEmployee" />
<output message="tns:getEmployeeResponse" />
<fault message="tns:SOAPException" name="SOAPException" />
</operation>
<operation name="createEmployee">
<input message="tns:createEmployee" />
<output message="tns:createEmployeeResponse" />

</operation>

Download free eBooks at bookboon.com

105

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

<operation name="updateEmployee">
<input message="tns:updateEmployee" />
<output message="tns:updateEmployeeResponse" />
</operation>
<operation name="deleteEmployee">
<input message="tns:deleteEmployee" />
<output message="tns:deleteEmployeeResponse" />
</operation>
</portType>
<binding name="EmployeeDocDataPortBinding" type="tns:EmployeeDocData">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

| <operation name='"getEmployee =

: <soap:operation soapAction="" />

1 <input>

1 <soap:body use="literal"” />

: </input> |

I <output> !

1 <soap:body use="literal" />

: </output> |

I <fault name="SOAPException'>

1 <soap:fault name="SOAPException" use="literal" /> :

: </fault> |
1

<operation name="createEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="updateEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="deleteEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>

Download free eBooks at bookboon.com

106

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

<service name="EmployeeDocDataService">
<port name="EmployeeDocDataPort" binding="tns:EmployeeDocDataPortBinding">
<soap:address location="http://localhost:9999/doc/employees" />
</port>
</service>
</definitions>

Consider the operation getEmployee (highlighted). This operation has one input and one output
element. These elements are defined in the message area above. These messages are getEmployee and
getEmployeeResponse, which are of tns:getEmployee and tns:getEmployeeResponse types, respectively.
The types are defined in the schema located at http://localhost:9999/doc/employees?xsd=1. See

highlighted area.

URL for associated schema:

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

Download free eBooks at bookboon.com &\S«\

Q
I=}
2
1]
c
=}
c
I=}
8
o
2
o
©
_.:__L
5]
3
2
5
oo

107 Click on the ad to read more

http://localhost:9999/doc/employees?xsd=1
http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-18. Schema (XSD) of a Web Service

<xs:schema xmlns:tns="http://employees.doc.ws.bemach.com/"

I_</xs:complexType>

l</xs:complexType>
<xs:complexType name='"getEmployeeResponse'>

xmlns:nsl="http://bemach.com" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
version="1.0" targetNamespace="http://employees.doc.ws.bemach.com/">
<xs:import namespace="http://bemach.com"
schemalLocation="http://localhost:9999/doc/employees?xsd=2" />
<xs:element name="SOAPException" type="tns:SOAPException" />
<xs:element name="createEmployee" type="tns:createEmployee" />
<xs:element name="createEmployeeResponse" type="tns:createEmployeeResponse" />
<xs:element name="deleteEmployee" type="tns:deleteEmployee" />
<xs:element name="deleteEmployeeResponse" type="tns:deleteEmployeeResponse" />
<xs:element name="getEmployee" type="tns:getEmployee" />
<xs:element name="getEmployeeResponse" type="tns:getEmployeeResponse" />
<xs:element name="updateEmployee" type="tns:updateEmployee" />
<xs:element name="updateEmployeeResponse" type="tns:updateEmployeeResponse" />
<xs:complexType name="deleteEmployee">
<xs:sequence>
<xs:element name="emplNo" type="xs:long" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="deleteEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:boolean" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="createEmployee">
<xs:sequence>
<xs:element name="employee" type="tns:employee" minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:sequence> :
<xs:element name="emplNo" type='"xs:long" /> !
<xs:element name="firstName" type="xs:string" /> :
<xs:element name="lastName" type='"xs:string" /> 1
<xs:element name="birthDate" type='"xs:dateTime" /> 1
<xs:element name='"gender" type='"xs:string" /> :
<xs:element name="hireDate" type='"xs:dateTime" /> |
</xs:sequence> 1
1
o

<xs:complexType name="createEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:long" />
</xs:sequence>
</xs:complexType>

<xs:sequence>
<xs:element name="emplNo" type='"xs:long" />
</xs:sequence>

<xs:sequence>
<xs:element name="return" type='"tns:employee” minOccurs="0" />
</xs:sequence>

Download free eBooks at bookboon.com

108

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

<xs:complexType name="SOAPException">
<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="updateEmployee">
<xs:sequence>
<xs:element name="employee" type="tns:employee" minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="updateEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:boolean" />
</xs:sequence>
</xs:complexType>
</xs:schema>

4.4.5.2 RPC Style

The difference between the WSDLs of RPC and Document styles can be difficult to detect; however,
XSDs are visibly different. All data types for the document style are defined using XML schema, while
all the simple data types (e.g., integer, long, string) are defined within the WSDL.

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating

stlatedic Marke Mg
Management _

i ternationalE=gne
. MEL[EE] Busine i
conomlics A

/

Shipping 1

B

Leadership &8
Qrganlsatio
Psyeh s

./-

/ -

' Ma ageetl

BUSINESS SCHOOL EQUIS

ACEREDITED

Download free eBooks at bookboon.com

109

and multi-cultural leaming environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* M5c in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* MSc in Leadership and Organisational Psychology

www.bi.edu/master

N

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-19. WSDL of a RPC Style

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://employees.rpc.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://employees.rpc.ws.bemach.com/"
name="EmployeeRpcDataService">
<types>
<xsd:schema>
<xsd:import namespace="http://employees.rpc.ws.bemach.com/"
schemalocation="http://localhost:9999/rpc/employees?xsd=1" />
</xsd:schema>
<xsd:schema>
<xsd:import namespace="http://bemach.com"
schemalocation="http://localhost:9999/rpc/employees?xsd=2" />
</xsd:schema>
</types>
<message name="getEmployee">
<part name="emplNo" type="xsd:long" />
</message>
<message name='"getEmployeeResponse'>
<part name="return" type="tns:employee" />
</message>
<message name="SOAPException">
<part name="fault" element="tns:SOAPException" />
</message>
<message name="createEmployee">
<part name="employee" type="tns:employee" />
</message>
<message name="createEmployeeResponse">
<part name="return" type="xsd:long" />
</message>
<message name="updateEmployee">
<part name="employee" type="tns:employee" />
</message>
<message name="updateEmployeeResponse">
<part name="return" type="xsd:boolean" />
</message>
<message name="deleteEmployee">
<part name="empINo" type="xsd:long" />
</message>
<message name="deleteEmployeeResponse">
<part name="return" type="xsd:boolean" />
</message>
<portType name="EmployeeRpcData">
<operation name="getEmployee">
<input message="tns:getEmployee" />
<output message="tns:getEmployeeResponse" />
<fault message="tns:SOAPException" name="SOAPException" />
</operation>
<operation name="createEmployee">
<input message="tns:createEmployee" />
<output message="tns:createEmployeeResponse" />
</operation>

Download free eBooks at bookboon.com

110

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

<operation name="updateEmployee">
<input message="tns:updateEmployee" />
<output message="tns:updateEmployeeResponse" />
</operation>
<operation name="deleteEmployee">
<input message="tns:deleteEmployee" />
<output message="tns:deleteEmployeeResponse" />
</operation>
</portType>
<binding name="EmployeeRpcDataPortBinding" type="tns:EmployeeRpcData">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc" />
<operation name="getEmployee"> I

<soap:operation soapAction="" /> Style
<input>

<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>

<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>

<fault name="SOAPException">
<soap:fault name="SOAPException" use="literal" />
</fault>
</operation>
<operation name="createEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>
</operation>
<operation name="updateEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>
</operation>
<operation name="deleteEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>
</operation>
</binding>

Download free eBooks at bookboon.com

111

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

<service name="EmployeeRpcDataService">
<port name="EmployeeRpcDataPort" binding="tns:EmployeeRpcDataPortBinding">
<soap:address location="http://localhost:9999/rpc/employees" />
</port>
</service>
</definitions>

Unlike the document style, the XSD documents for the RPC style are kept simple. Most of the basic data
types are defined inside the WSDL instead of in the XSD.

Listing 4-20. XSD of a Web Service (RPC)

<xs:schema xmlns:tns="http://employees.rpc.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" version="1.0"
targetNamespace="http://employees.rpc.ws.bemach.com/">
<xs:element name="SOAPException" type="tns:SOAPException" />
<xs:complexType name="employee'>
<xs:sequence>
<xs:element name="emplNo" type="xs:long" />
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="birthDate" type="xs:dateTime" />
<xs:element name="gender" type="xs:string" />
<xs:element name="hireDate" type='"xs:dateTime" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="SOAPException">
<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:schema>

Listing 4-21. An Additional XSD of a Web Service

<xs:schema xmlns:nsl="http://employees.rpc.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"™ version="1.0"
targetNamespace="http://bemach.com">
<xs:import namespace="http://employees.rpc.ws.bemach.com/"
schemalocation="http://localhost:9999/rpc/employees?xsd=1" />
<xs:element name="EmployeeService" type="nsl:employee" />
</xs:schema>

4.5 Test Web Services with SOAPUI

First, create a SOAPUI project for each of the WS endpoints. Then, run the operation of each Web Service.

Download free eBooks at bookboon.com

112

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

4.5.1 SOAPUI projects

Web Service can be tested using SOAPUI, which is an open source cross-platform functional testing
tool that can be used to test Web Services. Like Eclipse, SOAPUI is organized into projects. Each project
usually manages one service endpoint. Each service endpoint contains one or more operations that can
be called from a client machine. In order to test a Web Service, all you really need is a service endpoint

URL provided by your service provider.

The following figure shows how to create a SOAPUI test project for the employees data service with
document style at this service endpoint: http://localhost:9999/doc/employees?WSDL.

S New soapUl Project n
New soapUI Project @
Creates a new soapUI Project in this workspace
Project Name: ‘Emplwee Document |
Initial WSDL/WADL: ‘http:H\ocalhost:9999}’d0c{emplﬂyees7WSDu | [Browse...]
Create Requests: Create sample requests for all operations?
Create TestSuite: || Creates a TestSuite for the imported WSDL or WADL

Create MockService: [| Creates a Web Service Simulation of the imported WSDL

Add REST Service:] Opens dialog to create REST Service

Relative Paths: [stores all file paths in project relatively to project file (requires save)
Create Web TestCase: | | Creates a TestCase with a Web Recording session for functional web testing

Figure 4-13. Create a SOAPUI Project

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E:/Helpmyassignment

Download free eBooks at bookboon.com x(‘ :\

113 Click on the ad to read more

http://localhost:9999/doc/employees?WSDL
http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Introduction to Web Services with Java A Sample Web Service Application

Once the project has been created, a set of operations will appear, as shown in the following figures.
Note that you can now start testing these WS operations. In our example, four operations are visible:

createEmployee, deleteEmployee, getEmployee, and updateEmployee.

BEaERICKED Saarch For... an

-}
e E—
= I EmployseDocDatePortai

inding
= % creatstmployes
L
-3 deleteEmployee
| 1 Request1
&2 getEmployee
|4 Requesty
= 4 updatecmployee
12 Request 1 .
4@ Bmployee RPC Operatio
i @) Hello World RPC
@@ simple Hello world web Service

S03pUliog Wiplog jetylog ermoriog wsrm log memory kg

Figure 4-14. List of Oerations of a Web Service

Double-clicking on Requestl of the createEmployee operation will cause a multi-pane window to be

displayed. You can fill in the parameters and run the test by clicking on the green triangle to the left panel.

Fle Todls peswop tel
aERaCKED Search For... an
Frojects. = &
5 Employes Document itp:/localhost: 3995 doc/employees.
& T EmployesDocDataPertginding e ThEtE.// wchemes Smlanap 5eg/ |5

& 3 createEmployee
i Request 1
=3 deleteEmployee
1 Request 1 =
& % getEmployee
12 Request 1
£ 3 updateEmgloyee
£ Request 1
w) Employee RPC.
& @ Hello World RPC
i @) Simple Hello World Web Sarvice ol oges

g iopier
<mmpliias L0001/ ampihics

/gundurr
389-11-33T00+00:30-08 - 00</ hizeDases

Return here

Click here

.. Headers.. Amachment.. W.. WS-..
[5] | response time: 76ms (274 bytes) sk

ame
Descrigtion
(Propertes, soapUllog hitplog jellylog emorlog wermlog memory log

Figure 4-15. Execute a SOAP Operations

Other operations of the service can be tested in the same way.

Download free eBooks at bookboon.com

114

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

Web Service with an RPC style can be tested in a similar way. The only difference is that when you create

a SOAPUI project, you provide a different service endpoint (URL). A SOAPUI project can be created

for EmployeeData service with RPC style as follows:

s New soapUI Project “
New soapUI Project ﬁ
Creates a new soapUI Project in this workspace

Project Name:

Initial WSDL/WADL:
Create Requests:
Create TestSuite:
Create MockService:
Add REST Service:
Relative Paths:

Create Web TestCase: [| Creates a TestCase with a Web Recording session for functional web testing

|Emp|0yee RPC |

|http:,-’[|0ca|host:9999,-’rpc,-’emp|0yees?WSDL | [Browse...]

Create sample requests for all operations?
|| Creates a TestSuite for the imported WSDL or WADL
[] creates a Web Service Simulation of the imported WSDL

[] stores all file paths in project relatively to project file (requires save)

Figure 4-16. Create a new SOAPUI Project

4.6 Develope a Web Service Consumer

Developing a WS consumer (or client) involves three major activities: creating a client stub, creating a

client code that uses the client stub to call service operations, and running the client. These activities

are described as follows.

(]
B ra I n W e By 2020, wind could provide one-tenth of our planet's
electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!

T»ﬁ% Power of Knowledge Engineering

i

Plug into The Power of Knowle‘ngineering.

Visit us at www.skf.com/knowl

\ " Tk

Download free eBooks at bookboon.com

115 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Introduction to Web Services with Java A Sample Web Service Application

Create Client Create Client
Stub Code

Start End

Figure 4-17. Activities for Creating a Web Service Client

4.6.1 Creating Client Stub with wsimport

Writing a SOAP client with SAAJ can be complex and time-consuming. See section 2.4 for details.

Instead, we will use the wsimport tool to generate WS artifacts (stubs).
First, create a Java Project under Eclipse IDE and call it ‘java-ws-client.

1. At the command prompt, go to the Java Project for Eclipse called ‘java-ws-client’
2. Create a folder called ‘generated.

3. To generate WS stubs, run the following commands:

wsimport -d . http://localhost:9999/doc/employees?WSDL
wsimport -d . http://localhost:9999/rpc/employees?WSDL
wsimport -d . http://localhost:9999/java-ws/hello?WSDL

4. To create a Java library, run the following command:
Jar —cvf ../lib/java-ws—-generated.jar *
5. To verify the content of the created jar, run this command:
jar -tf ../lib/java-ws-generated.jar *
The content of the library should appears as follows:

META-INF/

META-INF/MANIFEST.MF

com/

com/bemach/
com/bemach/ObjectFactory.class
com/bemach/ws/
com/bemach/ws/doc/
com/bemach/ws/doc/employees/

com/bemach/ws/doc/employees/CreateEmployee.class

Download free eBooks at bookboon.com

116

http://bookboon.com/

com/bemach/ws/doc/employees/CreateEmployeeResponse.class
com/bemach/ws/doc/employees/DeleteEmployee.class
com/bemach/ws/doc/employees/DeleteEmployeeResponse.class
com/bemach/ws/doc/employees/Employee.class
com/bemach/ws/doc/employees/EmployeeDocData.class
com/bemach/ws/doc/employees/EmployeeDocDataService.class
com/bemach/ws/doc/employees/GetEmployee.class
com/bemach/ws/doc/employees/GetEmployeeResponse.class
com/bemach/ws/doc/employees/ObjectFactory.class
com/bemach/ws/doc/employees/package-info.class
com/bemach/ws/doc/employees/SOAPException.class
com/bemach/ws/doc/employees/SOAPException Exception.class
com/bemach/ws/doc/employees/UpdateEmployee.class
com/bemach/ws/doc/employees/UpdateEmployeeResponse.class
com/bemach/ws/hello/
com/bemach/ws/hello/HelloWorld.class
com/bemach/ws/hello/HelloWorldService.class
com/bemach/ws/hello/ObjectFactory.class
com/bemach/ws/hello/package-info.class
com/bemach/ws/hello/Say.class
com/bemach/ws/hello/SayResponse.class

com/bemach/ws/rpc/

com/bemach/ws/rpc/employees/
com/bemach/ws/rpc/employees/Employee.class
com/bemach/ws/rpc/employees/EmployeeRpcData.class
com/bemach/ws/rpc/employees/EmployeeRpcDataService.class
com/bemach/ws/rpc/employees/ObjectFactory.class
com/bemach/ws/rpc/employees/package-info.class
com/bemach/ws/rpc/employees/SOAPException.class

com/bemach/ws/rpc/employees/SOAPException Exception.class

These commands generate java binary code that can become part of a client program that calls Web

Services. Next, we create a Java library that contains the generated code: java-ws-generated.jar. This library
should be included as part of a library set for the Eclipse IDE. It is also a part of the Java CLASSPATH

during execution.

46.2 Create Client Code

We present two types of client code - document style and RPC style. Both are commonly used in WS

programming today; however, document style is preferred.

Download free eBooks at bookboon.com

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

After the coding has been completed, the java-ws-client project should look like this:

@ e cipse =] - |
File Edit Refactor Source Navigate Search Project Run Window Help
W BREHy NI By R E Y ®E
Ym0 | Quick Access | B | 42 Java EE i.g’.ljava | @ Web
f2 Package Explorer & | gif JUnit = =8 = O
B w ~ aedl
44 java-ws-client A~ =
+ @ s @ conn
4 # com.bemach.ws.employees.client ot
¢ [EmployeesDocClientjava —
i |1 EmployeesRpcClientjava 52 o iE
4 [com.bemachws.hello.client @
i+ 1 HelloWorldSOAPClient java An
- [1 HelloWorldwSClientjava outline is
i+ =h JRE System Library [jdk160_29] not
© =h Referenced Libraries available.
i = generated = 3 Bco. 2 = 0
+ e lib _ ® % GEEE e
=1 java-ws-generated.jar <terminated= Server (1) [Java Application] CAQr:
a buildxml i)
< >
java-ws-client

Figure 4-18. Screenshot of java-ws-client Java Project

“I studied
English for 16 -
years but...
...I finally .
learned to ‘
speak it in jus
Six lessons”

Jane, Chinese architect

— - ‘I J‘J " '

Download free eBooks at bookboon.com

OUT THERE

Click to hear me talking

before and after my

unique course download

118 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Introduction to Web Services with Java A Sample Web Service Application

4.6.2.1 EmployeesDocClient.java

This client code uses the generated client stub for making WS calls to the remote server. One important
class is the QName, where we create a qualified name that contains the targetNamespace and the name
attributes of the definitions element of the WSDL. The next important class is the URL where we create
a service endpoint as the location attribute of the soap:address element of the WSDL. From these two
classes, we can then create a service which we map onto the set of operations that the service provides.
Mapping the port onto the EmployeeDocData is specified as a type attribute of the binding element
within the WSDL. Once we get the port, we can call the operations as we did with the local method

invocation in Java.

Listing 4-22. EmployeesDocClient.java Class

package com.bemach.ws.employees.client;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.net.MalformedURLException;
import java.net.URL;
import java.util.logging.Logger;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import com.bemach.ws.doc.employees.Employee;

import com.bemach.ws.doc.employees.EmployeeDocData;

import com.bemach.ws.doc.employees.SOAPException Exception;
import com.bemach.ws.rpc.employees.EmployeeRpcDataService;

/‘k*

* This code relies on ws client generated code using wsimport program:
* wsimport -d . http://localhost:9999/doc/employees?WSDL

* wsimport -d . http://localhost:9999/rpc/employees?WSDL

* wsimport -d . http://localhost:9999/ch-1/HelloWorld?WSDL

* jar cvf ../ws-ch-l-generated.jar *

Download free eBooks at bookboon.com

119

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

public class EmployeesDocClient {
private static final Logger LOG = Logger.getLogger (EmployeesDocClient.
class.getName ());
private EmployeeDocData emplDs

null;

public EmployeesDocClient (String urlStr, String targetNs, String name)
throws MalformedURLException {
LOG.info ("Constructor ...");
QName gName = new QName (targetNs, name) ;
URL url = new URL (urlStr);
Service service = EmployeeRpcDataService.create(url, gName) ;
emplDs = service.getPort (EmployeeDocData.class);

public Employee get (long id) throws SOAPException Exception {
return emplDs.getEmployee (id) ;

public long create (Employee empl) {
return emplDs.createEmployee (empl) ;

public boolean delete(long id) {
return emplDs.deleteEmployee (id) ;

public boolean update (Employee empl) {
return emplDs.updateEmployee (empl) ;

/**
* @param args
* @throws MalformedURLException
* @throws SOAPException Exception
*/
public static void main(String[] args)
throws MalformedURLException, SOAPException Exception {
LOG.info ("Calling Employee (Document) data service ... ");
String targetNameSpace = "http://employees.doc.ws.bemach.com/";
String name = "EmployeeDocDataService";
String urlStr = String.format("http://localhost:%s/doc/
employees",args[0]);

EmployeesDocClient cli = new EmployeesDocClient (urlStr, targetNam-
eSpace, name);

long oldEmplNo = Integer.valueOf(args[l]);
Employee empl = cli.get (oldEmplNo)
LOG.info ("last="+empl.getLastName (
LOG.info ("hire="+empl.getHireDate (
LOG.info ("last="+empl.getLastName (
LOG.info ("first="+empl.getFirstName

’

())
()) i
())
()

()

Download free eBooks at bookboon.com

120

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

empl.setFirstName ("Silvester");
empl.setLastName ("Johnny") ;

long newEmplNo = cli.create(empl);
LOG.info ("emplNo="+newEmplNo) ;

Employee newEmpl = cli.get (newEmplNo) ;

newEmpl.setLastName ("New—-name") ;
newEmpl.setEmplNo (newEmplNo) ;

boolean status = cli.update (newEmpl) ;
LOG.info ("update:"+status) ;

LOG.info ("last="+newEmpl.getLastName ()) ;
LOG.info ("first="+newEmpl.getFirstName ()) ;

status = cli.delete (newEmplNo) ;
LOG.info ("deleteEmployee:"+status) ;
LOG.info ("Exit!");

4.6.2.2 EmployeesRpcClient.java

This class is nearly identical to that of the document-style client code. Thus, any difference between the
two styles of client code is nearly impossible to notice at this level. The significant difference is in the

coding within the SOAP engine on the client side.

Listing 4-23. EmployeesRpcClient.java Class

package com.bemach.ws.employees.client;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.net.MalformedURLException;
import java.net.URL;
import java.util.logging.Logger;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import com.bemach.ws.rpc.employees.Employee;

import com.bemach.ws.rpc.employees.EmployeeRpcData;

import com.bemach.ws.rpc.employees.EmployeeRpcDataService;
import com.bemach.ws.rpc.employees.SOAPException Exception;

Download free eBooks at bookboon.com

121

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

/**

* This code relies on ws client generated code using wsimport program:

* wsimport -d . http://localhost:9999/rpc/Employees?WSDL

* jar cvf ../ws-ch-l-generated.jar *

*

*/
public class EmployeesRpcClient {

private static final Logger LOG = Logger.getLogger (EmployeesRpcClient.

class.getName ());

private EmployeeRpcData emplDs null;
public EmployeesRpcClient (String urlStr, String targetNs, String name)
throws MalformedURLException {
LOG.info ("Constructor ...");
OName gName = new QName (targetNs, name);
URL url = new URL (urlStr);
Service service = EmployeeRpcDataService.create(url, gName) ;
emplDs = service.getPort (EmployeeRpcData.class);

public Employee get (long id) throws SOAPException Exception {
return emplDs.getEmployee (id) ;

public long create (Employee empl) {
return emplDs.createEmployee (empl) ;

public boolean delete(long id) {
return emplDs.deleteEmployee (id) ;

public boolean update (Employee empl) {
return emplDs.updateEmployee (empl) ;

/**
* @param args
* @throws MalformedURLException
* @throws SOAPException Exception
*/
public static void main(String[] args)
throws MalformedURLException, SOAPException Exception {
LOG.info ("Calling Employee (RPC) data service ... ");

String targetNameSpace = "http://employees.rpc.ws.bemach.com/";
String name = "EmployeeRpcDataService";

String urlStr = String.format ("http://localhost:%s/rpc/employees",args[0]);

EmployeesRpcClient cli = new EmployeesRpcClient (urlStr, targetNameSpace, name);

Download free eBooks at bookboon.com

122

http://bookboon.com/

Introduction to Web Services with Java A Sample Web Service Application

long oldEmplNo = Integer.valueOf(args[l]);
Employee empl = cli.get (oldEmplNo) ;

LOG.info ("last="+empl.getLastName ());
LOG.info ("hire="+empl.getHireDate ())
LOG.info ("last="+empl.getLastName ());
LOG.info ("first="+empl.getFirstName ()) ;

empl.setFirstName ("Silvester");
empl.setLastName ("Johnny") ;

long newEmplNo = cli.create(empl);
LOG.info ("emplNo="+newEmplNo) ;

Employee newEmpl = cli.get (newEmplNo) ;

newEmpl.setLastName ("New—-name") ;
newEmpl.setEmplNo (newEmplNo) ;

boolean status = cli.update (newEmpl) ;
LOG.info ("update:"+status) ;

LOG.info ("last="+newEmpl.getLastName ()) ;
LOG.info ("first="+newEmpl.getFirstName ()) ;

status = cli.delete (newEmplNo) ;
LOG.info ("deleteEmployee:"+status) ;
LOG.info ("Exit!");

(!

Voo Tovces | Rewsnr Toews | Mook Tmeoes | Vowro Buses | Voo Comsveucrion Eatrmwss | Voo Pesns 1 Wowo Aeso | Vooro IT

Vowo Foucier Sesnces | Voo 3P | Vowo Posemasin | Vowo Pasrs | Vowo Teckssonr | Vowolboasnos | Busiess Ane Asa

Download free eBooks at bookboon.com

123 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

463 Run the Client Application

With each of the client codes, we implemented one of the main methods for unit-testing purposes. Each
in this class can run as a standalone Java application. To run these applications, the following command

is used:

java -cp Jjava-ws-client.jar;./lib/java-ws-generated.jar com.bemach.

ws.employees.client.EmployeesDocClient
or

Java -cp Jjava-ws-client.jar;./lib/ws-ch-l-generated.jar com.bemach.

ws.employees.client.EmployeesRpcClient

Download free eBooks at bookboon.com

http://bookboon.com/

